Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Octopamine storage

The noradrenaline normally contained in the storage granules can be partly or completely replaced by structurally related sympathomimetic amines, either by injection of the amine itself, or of suitable precursors such as a-methyl-DOPA or a-methyl-w-tyrosine. These amines can be depleted from the heart by guanethidine in the same way as the noradrenaline which they had replaced. a-Methylnoradrenaline [337] and metaraminol [338] are depleted less readily than noradrenaline from rabbit or rat hearts, whereas dopamine, octopamine and w-octopamine are depleted more readily than noradrenaline [339]. The more rapid depletion of these last three compounds was attributed to weaker binding in the storage granules [339], but could equally well be due to their greater susceptibility to destruction by monoamine oxidase, since both a-methyl-noradrenaline and metaraminol are resistant to attack by monoamine oxidase. [Pg.180]

Octopamine (4.41), which carries a p-hydroxyl group, is taken up even more readily into storage vesicles and is, in turn, released when the neuron fires. As an adrenergic agonist, octopamine is, however, only about one-tenth as active as NE therefore, it acts as a very weak neurotransmitter. Compounds such as this behave like neurotransmitters of low potency, and are called false transmitters. On the other hand, octopamine may be a true transmitter in some invertebrates, with receptors that cannot be occupied either by other catecholamines or by serotonin. [Pg.227]

One pharmacological theory of the mechanism underlying postural hypotension is the false-transmitter theory. Tyramine may be metabolized to an inactive metabolite (octopamine) that partially fills the NE storage vesicles with a false (inactive) transmitter, but definitive proof is lacking. [Pg.152]

The action of tyramine on nerve receptors is mainly indirect by release of norepinephrine and dopamine from neuronal storage sites (363, 384). Tyramine and its /3-oxidized counterpart octopamine have been referred to as false neurotransmitters because these compounds can be taken up, stored, and released from nerve endings in a way similar to those of the principal neurotransmitters norepinephrine and dopamine (385). Octopamine was first discovered in salivary glands of octopods (386). The compound is widely distributed in the animal kingdom and is present in high amounts in the nervous system of several species of invertebrates such as molluscs and arthropods, where it acts as a specific transmitter substance (387). Octopamine may also play a role in the regulation of adrenergic neurotransmission in mammals (387). Administration of octopamine to intact animals produces a transient rise in blood pressure (388). [Pg.143]

Dopamine /3-hydroxylase is a monoxygenase that catalyzes the hydroxylation of dopamine to form norepinephrine. This enzyme is localized in the chromaffin granules of the adrenal medulla and in the storage vesicles of central and peripheral catecholaminergic neurons. Since these compounds are unstable, this activity is often assayed by following the formation of octopamine from tyramine. For example, in the assay developed by Feilchenfeld et al. (1982), the reactant tyramine was separated from the product octopamine by reversed-phase, ion-paired HPLC (/uBondapak C18 using a mobile phase of 17% (v/v)... [Pg.215]


See other pages where Octopamine storage is mentioned: [Pg.29]    [Pg.227]    [Pg.273]    [Pg.388]    [Pg.109]    [Pg.294]   
See also in sourсe #XX -- [ Pg.109 ]




SEARCH



Octopamine

© 2024 chempedia.info