Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Number of neutrons

The rapid fission of a mass of or another heavy nucleus is the principle of the atomic bomb, the energy liberated being the destructive power. For useful energy the reaction has to be moderated this is done in a reactor where moderators such as water, heavy water, graphite, beryllium, etc., reduce the number of neutrons and slow those present to the most useful energies. The heat produced in a reactor is removed by normal heat-exchange methods. The neutrons in a reactor may be used for the formation of new isotopes, e.g. the transuranic elements, further fissile materials ( °Pu from or of the... [Pg.44]

Though individual atoms always have an integer number of amus, the atomic mass on the periodic table is stated as a decimal number because it is an average of the various isotopes of an element. Isotopes can have a weight either more or less than the average. The average number of neutrons for an element can be found by subtracting the number of protons (atomic number) from the atomic mass. [Pg.220]

Atoms with the same number of protons but different numbers of neutrons are called isotopes. [Pg.642]

Atoms with the same number of protons but a different number of neutrons are called isotopes. To identify an isotope we use the symbol E, where E is the element s atomic symbol, Z is the element s atomic number (which is the number of protons), and A is the element s atomic mass number (which is the sum of the number of protons and neutrons). Although isotopes of a given element have the same chemical properties, their nuclear properties are different. The most important difference between isotopes is their stability. The nuclear configuration of a stable isotope remains constant with time. Unstable isotopes, however, spontaneously disintegrate, emitting radioactive particles as they transform into a more stable form. [Pg.642]

A neutron is characterized by having no electrical charge but has one unit of atomic mass, the same as that of a proton (Figure 46.2). Neutrons, like protons, reside in the atomic nucleus and contribute to the mass of the atom. The chemistry of an atom, like its size, is determined by the electrons in the atom. The mass of the atom is characterized mainly by the total number of neutrons and protons in the nucleus (atomic binding energies are ignored in this discussion). For mass spectrometric purposes of measurement, it is the mass that is important in establishing m/z values. [Pg.338]

Isotopes of an element are formed by the protons in its nucleus combining with various numbers of neutrons. Most natural isotopes are not radioactive, and the approximate pattern of peaks they give in a mass spectrum can be used to identify the presence of many elements. The ratio of abundances of isotopes for any one element, when measured accurately, can be used for a variety of analytical purposes, such as dating geological samples or gaining insights into chemical reaction mechanisms. [Pg.341]

The nucleus also contains neutrons. The number of neutrons (N) for any one element is similar to but not necessarily equal to the number of protons. [Pg.424]

Some elements contain a fixed number of neutrons, as with fluorine (P = 9, N = 10) and phosphorus (P = 15, N = 16). For their natural occurrences, atoms of any one such element all have the same mass (F= 19 P = 31). [Pg.424]

Atoms of many other elements contain nuclei that have different numbers of neutrons. For example, carbon (Z = 6) can have six neutrons (M = 6 + 6 = 12), seven neutrons (M = 13), or eight neutrons (M = 14). Atoms of the same atomic number but having different numbers of neutrons (and different atomic masses) are called isotopes. Thus, naturally occurring carbon has three isotopes, for which Z = P = 6 and N = 6 or 7 or 8. These are written. ... [Pg.424]

The dissociation energy is unaffected by isotopic substitution because the potential energy curve, and therefore the force constant, is not affected by the number of neutrons in the nucleus. However, the vibrational energy levels are changed by the mass dependence of 03 (proportional to where /r is the reduced mass) resulting in Dq being isotope-... [Pg.146]

The nuclear chain reaction can be modeled mathematically by considering the probable fates of a typical fast neutron released in the system. This neutron may make one or more coUisions, which result in scattering or absorption, either in fuel or nonfuel materials. If the neutron is absorbed in fuel and fission occurs, new neutrons are produced. A neutron may also escape from the core in free flight, a process called leakage. The state of the reactor can be defined by the multiplication factor, k, the net number of neutrons produced in one cycle. If k is exactly 1, the reactor is said to be critical if / < 1, it is subcritical if / > 1, it is supercritical. The neutron population and the reactor power depend on the difference between k and 1, ie, bk = k — K closely related quantity is the reactivity, p = bk jk. i the reactivity is negative, the number of neutrons declines with time if p = 0, the number remains constant if p is positive, there is a growth in population. [Pg.211]

The stmcture of the particles inside the nucleus was the next question to be addressed. One step in this direction was the discovery of the neutron in 1932 by Chadwick, and the deterrnination that the nucleus was made up of positively charged protons and uncharged neutrons. The number of protons in the nucleus is known as the atomic number, Z. The number of neutrons is denoted by A/, and the atomic mass is thus A = Z - - N. Another step toward describing the particles inside the nucleus was the introduction of two forces, namely the strong force that holds the protons and neutrons together in spite of the repulsion between the positive charges of the protons, and the weak force that produces the transmutation by P decay. [Pg.445]

Our present views on the electronic structure of atoms are based on a variety of experimental results and theoretical models which are fully discussed in many elementary texts. In summary, an atom comprises a central, massive, positively charged nucleus surrounded by a more tenuous envelope of negative electrons. The nucleus is composed of neutrons ( n) and protons ([p, i.e. H ) of approximately equal mass tightly bound by the force field of mesons. The number of protons (2) is called the atomic number and this, together with the number of neutrons (A ), gives the atomic mass number of the nuclide (A = N + Z). An element consists of atoms all of which have the same number of protons (2) and this number determines the position of the element in the periodic table (H. G. J. Moseley, 191.3). Isotopes of an element all have the same value of 2 but differ in the number of neutrons in their nuclei. The charge on the electron (e ) is equal in size but opposite in sign to that of the proton and the ratio of their masses is 1/1836.1527. [Pg.22]

H and 13C nuclei are not unique in their ability to exhibit the NMR phenomenon. All nuclei with an odd number of protons H, 2H, l4N, 19F, 31P, for example) and all nuclei with an odd number of neutrons (13C, for example) show magnetic properties. Only nuclei with even numbers of both protons and neutrons (l2C, 160) do not give rise to magnetic phenomena (Table 13.1). [Pg.442]

All atoms of a given element have the same number of protons, hence the same atomic number. They may, however, differ from one another in mass and therefore in mass number. This can happen because, although the number of protons in an atom of an element is fixed, the number of neutrons is not. It may vary and often does. Consider the element hydrogen (Z = 1). There are three different kinds of hydrogen atoms. They all have one proton in the nucleus. A light hydrogen atom (the most common type) has no neutrons in the nucleus (A = 1). Another type of hydrogen atom (deuterium) has one neutron (A = 2). Still a third type (tritium) has two neutrons (A = 3). [Pg.29]

Atoms that contain the same number of protons but a different number of neutrons are called isotopes. The three kinds of hydrogen atoms just described are isotopes of that element They have masses that are very nearly in the ratio 1 2 3. Among the isotopes of the element uranium are the following ... [Pg.30]

As you can see from Figure 2.5, the neutron-to-proton ratio required for stability varies with atomic number. For light elements (Z < 20), this ratio is close to 1. For example, the isotopes C, N, and are stable. As atomic number increases, the ratio increases the belt of stability shifts to higher numbers of neutrons. With very heavy isotopes such as 2j Pb, the stable neutron-to-proton ratio is about 1.5 ... [Pg.31]

Strategy The atomic number gives directly the number of protons. The number of neutrons is found in the usual way by subtracting the atomic number from the mass number. The number of electrons can be deduced from the number of protons by taking into account the charge of the ion. [Pg.36]

The atomic number Z(number of protons in the nucleus) is shown as a left subscript. The mass number A (number of protons + number of neutrons in the nucleus) appears as a left superscript. [Pg.513]

When a uranium-235 atom undergoes fission, it splits into two unequal fragments and a number of neutrons and beta particles. The fission process is complicated by the fact that different uranium-235 atoms split up in many different ways. For example, while one atom of 292U is splitting to give isotopes of rubidium (Z = 37) and cesium (Z = 55), another may break up to give isotopes of bromine (Z = 35) and lanthanum (Z = 57), while still another atom yields isotopes of zinc (Z = 30) and samarium (Z = 62) ... [Pg.524]

Nuclear symbol Charge Number of protons Number of neutrons Number of electrons g 60... [Pg.657]

The outstanding characteristic of the actinide elements is that their nuclei decay at a measurable rate into simpler fragments. Let us examine the general problem of nuclear stability. In Chapter 6 we mentioned that nuclei are made up of protons and neutrons, and that each type of nucleus can be described by two numbers its atomic number (the number of protons), and its mass number (the sum of the number of neutrons and protons). A certain type of nucleus is represented by the chemical symbol of the element, with the atomic number written at its lower left and the mass number written at its upper left. Thus the symbol... [Pg.416]

Fig. 23-1. The relation between number of neutrons and protons in stable nuclei. Each dot identifies a stable nucleus. Fig. 23-1. The relation between number of neutrons and protons in stable nuclei. Each dot identifies a stable nucleus.
Nuclei that have too many protons relative to their number of neutrons correct this situation in either of two ways. They either capture one of their Is electrons or they emit a positron (a positively charged particle with the same mass as an electron). Either process effectively changes a proton to a neutron within the nucleus. [Pg.418]

The observation that atoms of a single element can have different masses helped scientists refine the nuclear model still further. They realized that an atomic nucleus must contain subatomic particles other than protons and proposed that it also contains electrically neutral particles called neutrons (denoted n). Because neutrons have no electric charge, their presence does not affect the nuclear charge or the number of electrons in the atom. However, they do add substantially to the mass of the nucleus, so different numbers of neutrons in a nucleus give rise to atoms of different masses, even though the atoms belong to the same element. As we can see from Table B.l, neutrons and protons are very similar apart from their charge they are jointly known as nucleons. [Pg.42]

FIGURE B.7 The nuclei of different isotopes of the same element have the same number of protons but different numbers of neutrons. These three diagrams show the composition of the nuclei of the three isotopes of neon. On this scale, the atom itself would be about I km in diameter. These diagrams make no attempt to show how the protons and neutrons are arranged inside the nucleus. [Pg.43]


See other pages where Number of neutrons is mentioned: [Pg.228]    [Pg.351]    [Pg.774]    [Pg.227]    [Pg.221]    [Pg.205]    [Pg.509]    [Pg.429]    [Pg.437]    [Pg.390]    [Pg.451]    [Pg.1256]    [Pg.861]    [Pg.29]    [Pg.29]    [Pg.30]    [Pg.30]    [Pg.36]    [Pg.45]    [Pg.656]    [Pg.690]    [Pg.90]    [Pg.104]    [Pg.417]   
See also in sourсe #XX -- [ Pg.64 ]




SEARCH



Isotopes When the Number of Neutrons Varies

© 2024 chempedia.info