Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Substitution, nucleophilic groups

The Peterson reaction has two more advantages over the Wittig reaction 1. it is sometimes less vulnerable to sterical hindrance, and 2. groups, which are susceptible to nucleophilic substitution, are not attacked by silylated carbanions. The introduction of a methylene group into a sterically hindered ketone (R.K. Boeckman, Jr., 1973) and the syntheses of olefins with sulfur, selenium, silicon, or tin substituents (D. Seebach, 1973 B.T. Grdbel, 1974, 1977) illustrate useful applications. The reaction is, however, more limited and time consuming than the Wittig reaction, since metallated silicon derivatives are difficult to synthesize and their reactions are rarely stereoselective (T.H. Chan, 1974 ... [Pg.33]

Many saturated nitrogen heterocycles are commercially available from industrial processes, which involve, for example, nucleophilic substitution of hydroxyl groum by amino groups under conditions far from laboratory use, e.g. [Pg.149]

An important method for construction of functionalized 3-alkyl substituents involves introduction of a nucleophilic carbon synthon by displacement of an a-substituent. This corresponds to formation of a benzylic bond but the ability of the indole ring to act as an electron donor strongly influences the reaction pattern. Under many conditions displacement takes place by an elimination-addition sequence[l]. Substituents that are normally poor leaving groups, e.g. alkoxy or dialkylamino, exhibit a convenient level of reactivity. Conversely, the 3-(halomethyl)indoles are too reactive to be synthetically useful unless stabilized by a ring EW substituent. 3-(Dimethylaminomethyl)indoles (gramine derivatives) prepared by Mannich reactions or the derived quaternary salts are often the preferred starting material for the nucleophilic substitution reactions. [Pg.119]

Nucleophilic substitution of the 5-halo substituent on a thiazole ring by a thiocyanato group (348, 362, 370-376) or a thiouronium group (364, 377) affords the thiocyanato and thiouronium precursors."... [Pg.417]

With a carboxy group on the alkyl chain of the alkylthio substituent. C-4 may be involved in an intramolecular nucleophilic substitution to give 159 (Scheme 84). [Pg.418]

Nucleophilic substitution reactions of alkyl halides are related to elimination reactions m that the halogen acts as a leaving group on carbon and is lost as an anion The... [Pg.326]

Representative Functional Group Transformations by Nucleophilic Substitution Reactions of Alkyl Halides... [Pg.328]

The order of alkyl halide reactivity in nucleophilic substitutions is the same as their order m eliminations Iodine has the weakest bond to carbon and iodide is the best leaving group Alkyl iodides are several times more reactive than alkyl bromides and from 50 to 100 times more reactive than alkyl chlorides Fluorine has the strongest bond to car bon and fluonde is the poorest leaving group Alkyl fluorides are rarely used as sub states m nucleophilic substitution because they are several thousand times less reactive than alkyl chlorides... [Pg.330]

We saw m Section 8 2 that the rate of nucleophilic substitution depends strongly on the leaving group—alkyl iodides are the most reactive alkyl fluorides the least In the next section we 11 see that the structure of the alkyl group can have an even greater effect... [Pg.334]

All these reactions of octadecyl p toluenesulfonate have been reported in the chemical literature and all proceed in synthetically useful yield You should begin by identifying the nucleophile in each of the parts to this problem The nucleophile replaces the p toluenesulfonate leaving group in an Sn2 reaction In part (a) the nucleophile is acetate ion and the product of nucleophilic substitution IS octadecyl acetate... [Pg.353]

An advantage that sulfonate esters have over alkyl halides is that their prepara tion from alcohols does not involve any of the bonds to carbon The alcohol oxygen becomes the oxygen that connects the alkyl group to the sulfonyl group Thus the configuration of a sulfonate ester is exactly the same as that of the alcohol from which It was prepared If we wish to study the stereochemistry of nucleophilic substitution m an optically active substrate for example we know that a tosylate ester will have the same configuration and the same optical purity as the alcohol from which it was prepared... [Pg.353]

Section 8 1 Nucleophilic substitution is an important reaction type m synthetic organic chemistry because it is one of the mam methods for functional group transformations Examples of synthetically useful nucleophilic sub stitutions were given m Table 8 1 It is a good idea to return to that table and review its entries now that the details of nucleophilic substitution have been covered... [Pg.355]

Section 8 14 Nucleophilic substitution can occur with leaving groups other than halide Alkyl p toluenesulfonates (tosylates) which are prepared from alcohols by reaction with p toulenesulfonyl chloride are often used... [Pg.357]

The reactions of alcohols with hydrogen halides to give alkyl halides (Chapter 4) are nucleophilic substitution reactions of alkyloxonium ions m which water is the leaving group Primary alcohols react by an 8 2 like displacement of water from the alkyloxonium ion by halide Sec ondary and tertiary alcohols give alkyloxonium ions which form carbo cations m an S l like process Rearrangements are possible with secondary alcohols and substitution takes place with predominant but not complete inversion of configuration... [Pg.357]

Conversion to p toluenesulfonate es ters (Section 8 14) Alcohols react with p toluenesulfonyl chloride to give p toluenesulfonate esters Sulfo nate esters are reactive substrates for nucleophilic substitution and elimma tion reactions The p toluenesulfo nate group is often abbreviated —OTs... [Pg.636]

Next in what amounts to an intramolecular Williamson ether synthesis the alkoxide oxygen attacks the carbon that bears the halide leaving group giving an epoxide As m other nucleophilic substitutions the nucleophile approaches carbon from the side oppo site the bond to the leaving group... [Pg.677]

Overall the stereospecificity of this method is the same as that observed m per oxy acid oxidation of alkenes Substituents that are cis to each other m the alkene remain CIS m the epoxide This is because formation of the bromohydrm involves anti addition and the ensuing intramolecular nucleophilic substitution reaction takes place with mver Sion of configuration at the carbon that bears the halide leaving group... [Pg.677]

A naturally occurring sulfonium salt S adenosylmethionme (SAM) is a key sub stance in certain biological processes It is formed by a nucleophilic substitution m which the sulfur atom of methionine attacks the primary carbon of adenosine triphosphate dis placing the triphosphate leaving group as shown m Figure 16 7... [Pg.687]

Nitriles contain the —C=N functional group We have already discussed the two mam procedures by which they are prepared namely the nucleophilic substitution of alkyl halides by cyanide and the conversion of aldehydes and ketones to cyanohydrins Table 20 6 reviews aspects of these reactions Neither of the reactions m Table 20 6 is suitable for aryl nitriles (ArC=N) these compounds are readily prepared by a reaction to be dis cussed m Chapter 22... [Pg.867]


See other pages where Substitution, nucleophilic groups is mentioned: [Pg.220]    [Pg.281]    [Pg.220]    [Pg.220]    [Pg.119]    [Pg.220]    [Pg.281]    [Pg.220]    [Pg.220]    [Pg.119]    [Pg.424]    [Pg.162]    [Pg.209]    [Pg.256]    [Pg.305]    [Pg.69]    [Pg.321]    [Pg.16]    [Pg.89]    [Pg.119]    [Pg.82]    [Pg.572]    [Pg.326]    [Pg.326]    [Pg.327]    [Pg.329]    [Pg.334]    [Pg.335]    [Pg.336]    [Pg.351]    [Pg.351]    [Pg.352]    [Pg.737]    [Pg.862]   
See also in sourсe #XX -- [ Pg.70 ]




SEARCH



Nucleophiles groups

Nucleophilic groups

© 2024 chempedia.info