Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nucleophilic substitution benzylic

Nucleophilic substitution. Benzylic acetates react with nucleophiles such as amines, sodium arenesulfonates, and malonic esters under the influence of the title reagent together with DPPF and a mild base [Et3N in EtOH or K2CO3 in t-AmOEl]. [Pg.4]

As is broadly true for aromatic compounds, the a- or benzylic position of alkyl substituents exhibits special reactivity. This includes susceptibility to radical reactions, because of the. stabilization provided the radical intermediates. In indole derivatives, the reactivity of a-substituents towards nucleophilic substitution is greatly enhanced by participation of the indole nitrogen. This effect is strongest at C3, but is also present at C2 and to some extent in the carbocyclic ring. The effect is enhanced by N-deprotonation. [Pg.3]

An important method for construction of functionalized 3-alkyl substituents involves introduction of a nucleophilic carbon synthon by displacement of an a-substituent. This corresponds to formation of a benzylic bond but the ability of the indole ring to act as an electron donor strongly influences the reaction pattern. Under many conditions displacement takes place by an elimination-addition sequence[l]. Substituents that are normally poor leaving groups, e.g. alkoxy or dialkylamino, exhibit a convenient level of reactivity. Conversely, the 3-(halomethyl)indoles are too reactive to be synthetically useful unless stabilized by a ring EW substituent. 3-(Dimethylaminomethyl)indoles (gramine derivatives) prepared by Mannich reactions or the derived quaternary salts are often the preferred starting material for the nucleophilic substitution reactions. [Pg.119]

Step 1 The Boc protected amino acid is anchored to the resin Nucleophilic substitution of the benzylic chloride by the carboxylate anion gives an ester... [Pg.1143]

Examples of effects of reactant stmcture on the rate of nucleophilic substitution reactions have appeared in the preceding sections of this chapter. The general trends of reactivity of primaiy, secondary, and tertiaiy systems and the special reactivity of allylic and benzylic systems have been discussed in other contexts. This section will emphasize the role that steric effects can pl in nucleophilic substitution reactions. [Pg.298]

Benzylic carbon-hydrogen bonds in compounds such as methylpentafluoro-benzene, fluoromethylpentafluorobenzene, and difluoromethylpentafluoroben-zene are not capable of metalation by butyllithium Instead nucleophilic substitution of the para fluorines occurs m each example [55] (equation 13)... [Pg.651]

Nucleophilic substitution of the halogen atom of halogenomethylisoxazoles proceeds readily this reaction does not differ essentially from that of benzyl halides. One should note the successful hydrolysis of 4-chloromethyl- and 4-(chlorobenzyl)-isoxazoles by freshly precipitated lead oxide, a reagent seldom used in organic chemistry. Other halides, ethers, and esters of the isoxazole series have been obtained from 3- and 4-halogenomethylisoxazoles, and 3-chloro-methylisoxazole has been reported in the Arbuzov rearrangement. Panizzi has used dichloromethylisoxazole derivatives to synthesize isoxazole-3- and isoxazole-5-aldehydes/ ... [Pg.393]

The reaction of tributyltin hydride with ring-substituted benzyl chlorides gives a Hammett p-factor of -1-0.81, confirming the "nucleophilic character of the BusSn- radical (303). [Pg.26]

Alkyl halides can be hydrolyzed to alcohols. Hydroxide ion is usually required, except that especially active substrates such as allylic or benzylic types can be hydrolyzed by water. Ordinary halides can also be hydrolyzed by water, if the solvent is HMPA or A-methyl-2-pyrrolidinone." In contrast to most nucleophilic substitutions at saturated carbons, this reaction can be performed on tertiary substrates without significant interference from elimination side reactions. Tertiary alkyl a-halocarbonyl compounds can be converted to the corresponding alcohol with silver oxide in aqueous acetonitrile." The reaction is not frequently used for synthetic purposes, because alkyl halides are usually obtained from alcohols. [Pg.463]

The method is quite useful for particularly active alkyl halides such as allylic, benzylic, and propargylic halides, and for a-halo ethers and esters, but is not very serviceable for ordinary primary and secondary halides. Tertiary halides do not give the reaction at all since, with respect to the halide, this is nucleophilic substitution and elimination predominates. The reaction can also be applied to activated aryl halides (such as 2,4-dinitrochlorobenzene see Chapter 13), to epoxides, " and to activated alkenes such as acrylonitrile. The latter is a Michael type reaction (p. 976) with respect to the alkene. [Pg.787]

The objective in selecting the reaction conditions for a preparative nucleophilic substitution is to enhance the mutual reactivity of the leaving group and nucleophile so that the desired substitution occurs at a convenient rate and with minimal competition from other possible reactions. The generalized order of leaving-group reactivity RSOj" I- > BF > CF pertains for most Sw2 processes. (See Section 4.2.3 of Part A for more complete data.) Mesylates, tosylates, iodides, and bromides are all widely used in synthesis. Chlorides usually react rather slowly, except in especially reactive systems, such as allyl and benzyl. [Pg.224]

Methoxyphenyl (PMP) ethers find occasional use as hydroxy protecting groups. Unlike benzylic groups, they cannot be made directly from the alcohol. Instead, the phenoxy group must be introduced by a nucleophilic substitution.185 Mitsunobu conditions are frequently used.186 The PMP group can be cleaved by oxidation with CAN. [Pg.264]

Alkyl methacrylates, hydrolysis of polymeric ester functionality, 259 Aluminum-hydrogen bond, nucleophilic substitution, 264 Amines alkylation, 28 benzyl-group cleavage, 25 Aminomethylation chloromethylated polymers, 19 Deltfpine reaction, 19 Anionic polymerization advantages, 85... [Pg.472]

For carbon-carbon bond-formation purposes, S 2 nucleophilic substitutions are frequently used. Simple S 2 nucleophilic substitution reactions are generally slower in aqueous conditions than in aprotic organic solvents. This has been attributed to the solvation of nucleophiles in water. As previously mentioned in Section 5.2, Breslow and co-workers have found that cosolvents such as ethanol increase the solubility of hydrophobic molecules in water and provide interesting results for nucleophilic substitutions (Scheme 6.1). In alkylations of phenoxide ions by benzylic chlorides, S/y2 substitutions can occur both at the phenoxide oxygen and at the ortho and para positions of the ring. In fact, carbon alkylation occurs in water but not in nonpolar organic solvents and it is observed only when the phenoxide has at least one methyl substituent ortho, meta, or para). The effects of phenol substituents and of cosolvents on the rates of the competing alkylation processes... [Pg.177]

Breslow and co-workers have found that cosolvents such as ethanol increase the solubility of hydrophobic molecules in water and provide interesting results for nucleophilic substitutions of phenoxide ions by benzylic chlorides carbon alkylation occurs in water but not in nonpolar organic solvents, and it is observed only when the phenoxide has at least one methyl substituent (ortho, meta, or para). This has been discussed in Chapter 6 (Section 6.4.2). [Pg.208]


See other pages where Nucleophilic substitution benzylic is mentioned: [Pg.397]    [Pg.397]    [Pg.16]    [Pg.444]    [Pg.445]    [Pg.481]    [Pg.26]    [Pg.299]    [Pg.537]    [Pg.967]    [Pg.444]    [Pg.445]    [Pg.284]    [Pg.122]    [Pg.175]    [Pg.76]    [Pg.500]    [Pg.740]    [Pg.1543]    [Pg.707]    [Pg.740]    [Pg.282]    [Pg.62]    [Pg.2]    [Pg.234]    [Pg.234]    [Pg.153]    [Pg.191]   
See also in sourсe #XX -- [ Pg.982 ]




SEARCH



Benzylic substitution

© 2024 chempedia.info