Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Relative reactivity nucleophilic attack

The initiator required to polymerize a monomer depends on the reactivity of the monomer toward nucleophilic attack. Monomer reactivity increases with increasing ability to stabilize the carbanion charge. Very strong nucleophiles such as amide ion or alkyl carbanion are needed to polymerize monomers, such as styrene and 1,3-butadiene, with relatively weak electron-withdrawing substituents. Weaker nucleophiles, such as alkoxide and hydroxide... [Pg.413]

As we have seen the nucleophile attacks the substrate m the rate determining step of the Sn2 mechanism it therefore follows that the rate of substitution may vary from nucleophile to nucleophile Just as some alkyl halides are more reactive than others some nucleophiles are more reactive than others Nucleophilic strength or nucleophilicity, is a measure of how fast a Lewis base displaces a leaving group from a suitable substrate By measuring the rate at which various Lewis bases react with methyl iodide m methanol a list of then nucleophihcities relative to methanol as the standard nucleophile has been compiled It is presented m Table 8 4... [Pg.337]

Halopyridines undergo self-quaternization on standing while the less reactive 2-halo isomers do not. However, more is involved here than the relative reactivity at the ring-positions. The reaction rate will depend on the relative riucleophilicity of the attack-ing pyridine-nitrogens (4-chloropyridine is more basic) and on the much lower steric hindrance at the 4-position. Related to this self-quatemization are the reactions of pyridine and picolines as nucleophiles with 4-chloro- and 2-chloro-3-nitropyridines. The 4-isomer (289) is. again the more reactive by 10-30-fold (Table VII, p. 276). [Pg.287]

The k2 term suggests a simple bimolecular process in which nucleophilic attack by Y leads to a SN2 reaction. Associative paths will involve a 5-coordinate (sp or tbp) intermediate, and the relative rarity of isolable 5-coordinate plati-num(II) species - compared with 4-coordinate - is not inconsistent with their involvement as reactive intermediates (Figure 3.81). [Pg.237]

The (V-hydroxysuccinimide that is liberated is easily removed because of its solubility in dilute base. The relative stability of the anion of A-hydroxysuccinimide is also responsible for the acyl derivative being reactive toward nucleophilic attack by an... [Pg.253]

The quantum yields for oxetane formation have not been determined in every case, and only a few relative rate constants are known. The reactivities of singlet and triplet states of alkyl ketones are very nearly equal in attack on electron rich olefins. 72> However, acetone singlets are about an order of magnitude more reactive in nucleophilic attack on electron-deficient olefins. 61 > Oxetane formation is competitive with a-cleavage, hydrogen abstraction and energy-transfer reactions 60 64> so the absolute rates must be reasonably high. Aryl aldehydes and ketones add to olefins with lower quantum yields, 66> and 3n-n states are particularly unreactive. 76>... [Pg.151]

The reactivity of these metal hydride-metal carbonyl reactions can be correlated with the nature of the reactants in a manner consistent with the proposed mechanism nucleophilic attack by hydride on coordinated CO. Thus reactions involving the highly nucleophilic group IV hydride, Cp gZrHg, are much faster than those of group V metal hydrides. On the other hand, the relatively electrophilic neutral binary metal carbonyls all react with Cp2NbH under mild conditions (20-50° C), whereas more electron-rich complexes such as cyclopentadienylmetal carbonyls (Cp2NbH(C0), CpV(CO) ) or anionic carbonyls (V(CO)g ) show no reaction under these conditions. [Pg.256]

Evaluation of the only appropriate Fukui function is required for investigating an intramolecular reaction, as local softness is merely scaling of Fukui function (as shown in Equation 12.7), and does not alter the intramolecular reactivity trend. For this type, one needs to evaluate the proper Fukui functions (/+ or / ) for the different potential sites of the substrate. For example, the Fukui function values for the C and O atoms of H2CO, shown above, predicts that O atom should be the preferred site for an electrophilic attack, whereas C atom will be open to a nucleophilic attack. Atomic Fukui function for electrophilic attack (fc ) for the ring carbon atoms has been used to study the directing ability of substituents in electrophilic substitution reaction of monosubstituted benzene [23]. In some cases, it was shown that relative electrophilicity (f+/f ) or nucleophilicity (/ /f+) indices provide better intramolecular reactivity trend [23]. For example, basicity of substituted anilines could be explained successfully using relative nucleophilicity index ( / /f 1) [23]. Note however that these parameters are not able to differentiate the preferred site of protonation in benzene derivatives, determined from the absolute proton affinities [24],... [Pg.170]

Alkenes may be oxidized to epoxides that are reactive metabolites because of ring strain [36] and can undergo nucleophilic attack. Epoxides are not always highly reactive species. In fact, some of them are relatively unreactive for example, the arene oxides that derive from oxidation of phenyl rings. Most drugs containing a phenyl... [Pg.271]

A solvent-dependent chemoselectivity, pointing to a dependence of the relative reactivities of the 1,2- and 1,1-disubstituted double bonds on solvent polarity and nucleophilicity, has been observed in the reaction of benzeneselenenyl chloride with 2-methylenebicyclo[2.2.1]hept-5-ene (159) which gives products 160-163140. In methylene chloride the reaction occurs with a moderate chemoselectivity, attack on the endocyclic bond being preferred over that on the exocyclic one in a 60 40 ratio. In methanol, the addition is completely chemoselective and the attack occurs exclusively on the endocyclic double bond (equation 132). It may be further noted that 162 and 163 isomerize and solvolyze at high temperatures, leading to the homoallylic products 160 and 161. [Pg.620]

The relative reactivity of a wide series of nucleophiles towards dioxirane, dimethyidioxirane, carbonyl oxide, and dimethylcarbonyl oxide has been examined at various levels of theory. The general trend in reactivity for oxidation by dioxirane was R2S R2SO, R3P > R3N in the gas phase, and R2S R2SO, R3N R3 (R = Me) in solution. A theoretical study of the first oxidation step of [3.2.1]-bridged bicyclic disulfides highlights a highly oriented reaction path was probably responsible for stereoselective attack on the exo face. ... [Pg.235]

Because the addition steps are generally fast and consequently exothermic chain steps, their transition states should occur early on the reaction coordinate and therefore resemble the starting alkene. This was recently confirmed by ab initio calculations for the attack at ethylene by methyl radicals and fluorene atoms. The relative stability of the adduct radicals therefore should have little influence on reacti-vity 2 ). The analysis of reactivity and regioselectivity for radical addition reactions, however, is even more complex, because polar effects seem to have an important influence. It has been known for some time that electronegative radicals X-prefer to react with ordinary alkenes while nucleophilic alkyl or acyl radicals rather attack electron deficient olefins e.g., cyano or carbonyl substituted olefins The best known example for this behavior is copolymerization This view was supported by different MO-calculation procedures and in particular by the successful FMO-treatment of the regioselectivity and relative reactivity of additions of radicals to a series of alkenes An excellent review of most of the more recent experimental data and their interpretation was published recently by Tedder and... [Pg.26]


See other pages where Relative reactivity nucleophilic attack is mentioned: [Pg.179]    [Pg.215]    [Pg.376]    [Pg.416]    [Pg.470]    [Pg.355]    [Pg.189]    [Pg.307]    [Pg.68]    [Pg.10]    [Pg.700]    [Pg.3]    [Pg.70]    [Pg.142]    [Pg.23]    [Pg.519]    [Pg.570]    [Pg.152]    [Pg.464]    [Pg.252]    [Pg.219]    [Pg.427]    [Pg.558]    [Pg.139]    [Pg.1232]    [Pg.569]    [Pg.13]    [Pg.503]    [Pg.341]    [Pg.150]    [Pg.439]    [Pg.123]    [Pg.307]    [Pg.363]    [Pg.77]   
See also in sourсe #XX -- [ Pg.1104 , Pg.1105 , Pg.1106 , Pg.1107 , Pg.1108 , Pg.1109 , Pg.1110 , Pg.1111 ]




SEARCH



Nucleophile Nucleophilic attack

Nucleophile attack

Nucleophiles attack

Nucleophiles relative reactivity

Nucleophilic attack

Nucleophilic reactivity

Nucleophilicities, relative

Nucleophilicity relative

Reactivity nucleophilicity

Reactivity relative reactivities

Relative reactivities

© 2024 chempedia.info