Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nucleophilic attack oxidation

As we ve just seen nucleophilic ring opening of ethylene oxide yields 2 substituted derivatives of ethanol Those reactions involved nucleophilic attack on the carbon of the ring under neutral or basic conditions Other nucleophilic ring openings of epoxides like wise give 2 substituted derivatives of ethanol but either involve an acid as a reactant or occur under conditions of acid catalysis... [Pg.681]

Another very important reaction initially involving nucleophilic attack on an aldehyde carbonyl is the Wittig reaction. An yUd adds to the carbonyl forming a betaine intermediate which then decomposes to produce an olefin and a tertiary phosphine oxide. [Pg.471]

Nucleophilic Attack at Carbon or Hydrogen. Only the strongest of nucleophiles (eg, —NH2) can replace a hydrogen in pyridine. However, N-oxides and quaternary salts rapidly undergo addition, followed by subsequent transformations (12). [Pg.325]

Methylpyridinium quaternary salts, such as (12), undergo oxidation in alkaline solution in the presence of potassium ferricyanide to give 2-pyridones, eg, A/-methyl-2-pyridone [694-85-9] (16). Frequendy nucleophilic attack at position 2 by excess hydroxide leads to ring opening this and synthetically useful recycli2ations have been reviewed (17). [Pg.325]

For two-equivalent couplers where the conversion of the leuco dye to image dye is rapid, the experimentally observed second-order rate constant, k, can be equated with kj, the rate of nucleophilic attack of coupler anion on oxidized developer. Thus when the pH of the process is specified, two parameters, piC and k, can be convenientiy used to characterize the molecular reactivity of a large variety of photographically weU-behaved couplers (40,54). [Pg.475]

Virtually all of the organo derivatives of CA are produced by reactions characteristic of a cycHc imide, wherein isocyanurate nitrogen (frequendy as the anion) nucleophilically attacks a positively polarized carbon of the second reactant. Cyanuric acid and ethylene oxide react neady quantitatively at 100°C to form tris(2-hydroxyethyl)isocyanurate [839-90-7] (THEIC) (48—52). Substitution of propylene oxide yields the hydroxypropyl analogue (48,49). At elevated temperatures (- 200° C). CA and alkylene oxides react in inert solvent to give A/-hydroxyalkyloxazohdones in approximately 70% yield (53). Alternatively, THEIC can be prepared by reaction of CA and 2-chloroethanol in aqueous caustic (52). THEIC can react further via its hydroxyl fiinctionahty to form esters, ethers, urethanes, phosphites, etc (54). Reaction of CA with epichlorohydrin in alkaline dioxane solution gives... [Pg.419]

The reactions are highly exothermic. Under Uquid-phase conditions at about 200°C, the overall heat of reaction is —83.7 to —104.6 kJ/mol (—20 to —25 kcal/mol) ethylene oxide reacting (324). The opening of the oxide ring is considered to occur by an ionic mechanism with a nucleophilic attack on one of the epoxide carbon atoms (325). Both acidic and basic catalysts accelerate the reactions, as does elevated temperature. The reaction kinetics and product distribution have been studied by a number of workers (326,327). [Pg.415]

Electrophilic attack Nucleophilic attack Free radical attack Photochemical reactions Oxidative and reductive reactions... [Pg.57]

In spite of the usefulness of the Beirut reaction, mechanistically it is not well understood. It has been suggested that the first step involves the nucleophilic attack by the enolate or the enamine at N-3 of the benzofuroxan to yield an intermediate iV-oxide (Scheme 50) which subsequently undergoes tautomerism to an hydroxylamino derivative. This intermediate then cyclizes to the dihydroquinoxaline 1,4-dioxide. This suggestion has not been proven, and indeed there is evidence that benzofuroxan is in equilibrium with 1,2-dinitrosobenzene... [Pg.183]

The purely chemical analogy involving nucleophilic attack and subsequent oxidation can be achieved by hydrogen peroxide, which converts pteridin-6-one into pteridine-6,7-dione (52JCS1620), and xanthopterin (4) into leucopterin (6) (39LA(539)179). Isoxanthopterin (5) reacts with nitrous acid to give pteridine-2,4,6,7-tetrone (44LA(555)146). [Pg.287]

Bromine in chloroform and bromine in acetic acid are the reagents used most often to brominate pyrazole. When nitric acid is used as a solvent, both bromine and chlorine transform pyrazoles into pyrazolones (Scheme 24). Thus 3-methyl-l-(2,4-dinitrophe-nyOpyrazole is brominated at the 4-position (309). The product reacts with chlorine and nitric acid to give the pyrazolone (310). The same product results from the action of bromine and nitric acid on (311). The electrophilic attack of halogen at C-4 is followed by the nucleophilic attack of water at C-5 and subsequent oxidation by nitric acid. [Pg.240]

Nucleophilic attack on oxirane carbon usually proceeds with inversion of configuration (Scheme 44) as expected for Sn2 reactions, even under acid conditions (Scheme 45). Scheme 45 also illustrates the fact that cyclohexene oxides open in a fran5-diaxial manner this is known as the Fiirst-Plattner rule (49HCA275) and there are very few exceptions to it. [Pg.110]

One example of nucleophilic attack by a rr-electron system on a sulfur atom of a thiirane 1-oxide is shown in Scheme 51. S-Alkylthiirenium ions react with tetramethylethylene to transfer the S-alkyl group yielding the alkyne and an S-alkyl-2,2,3,3-tetramethylthiiranium ion (79MI50600). [Pg.155]

Azetidine, 7V-bromo-, 7, 240 Azetidine, AT-r-butyl- N NMR, 7, 11 Azetidine, AT-t-butyl-3-chloro-transannular nucleophilic attack, 7, 25 Azetidine, 3-chloro-isomerization, 7, 42 Azetidine, AT-chloro-, 7, 240 dehydrohalogenation, 7, 275 Azetidine, 7V-chloro-2-methyl-inversion, 7, 7 Azetidine, 3-halo-synthesis, 7, 246 Azetidine, AT-halo-synthesis, 7, 246 Azetidine, AT-hydroxy-synthesis, 7, 271 Azetidine, 2-imino-stability, 7, 256 Azetidine, 2-methoxy-synthesis, 7, 246 Azetidine, 2-methyl-circular dichroism, 7, 239 optical rotatory dispersion, 7, 239 Azetidine, AT-nitroso-deoxygenation, 7, 241 oxidation, 7, 240 synthesis, 7, 246 Azetidine, thioacyl-ring expansion, 7, 241 Azetidine-4-carboxylic acid, 2-oxo-oxidative decarboxylation, 7, 251 Azetidine-2-carboxylic acids absolute configuration, 7, 239 azetidin-2-ones from, 7, 263 synthesis, 7, 246... [Pg.525]

Imidazolium halides pyrolysis, 5, 449 Imidazolium ions acylation, 5, 402 H NMR, 5, 352 hydrogen exchange, 5, 417 nucleophilic attack, 5, 375 reactivity, 5, 375 ring opening, S, 375 Imidazolium oxides in pyrrole synthesis, 4, 344 Imidazolium perchlorate, 1,3-diphenyl-acylation, 5, 402 Imidazolium salts 1-acetyl-... [Pg.659]

Isoxazole, 3-acetyl-4-chloro-5-methyl-oxidation, 6, 27, 53 Isoxazole, 3-acetyl-4,5-dimethyl-oxidation, 6, 27, 53 Isoxazole, 5-acetyl-3-methoxy-reactions, 6, 53 Isoxazole, 3-acyl-furazans from, 6, 417 nucleophilic attack, S, 93 reactions with bases, 6, 30... [Pg.685]

Phthalazine-1,4-diones reactions, 3, 39 Phthalazines applications, 3, 56 isoindoles from, 4, 152 mass spectra, 2, 21 metabolism, 1, 233 N-oxidation, 3, 20 nitration, 3, 22 nucleophilic attack, 3, 25 oxidation, 3, 31... [Pg.744]

Pyrazolopyrimidines, amino-acidity, 5, 309 alkylation, 5, 310 N-oxide synthesis, 5, 324 synthesis, 4, 525 5, 328 Pyrazolopyrimidines, dimethyl-synthesis, 5, 316 Pyrazolo[ 1,5-a]pyrimidines electrophilic attack, 5,311 synthesis, 5, 271, 320, 331 Pyrazolo[ 1,5-c]pyrimidines electrophilic attack, 5, 312 Pyrazolo[3,4- d]pyrimidines nucleophilic attack, 5, 313 synthesis, 5, 161, 272, 323, 334 tautomerism, 5, 309 Pyrazolo[4,3-d]pyrimidines alkylation, 5, 310 synthesis, 5, 272... [Pg.778]


See other pages where Nucleophilic attack oxidation is mentioned: [Pg.231]    [Pg.721]    [Pg.312]    [Pg.231]    [Pg.721]    [Pg.312]    [Pg.40]    [Pg.41]    [Pg.177]    [Pg.182]    [Pg.182]    [Pg.236]    [Pg.287]    [Pg.290]    [Pg.303]    [Pg.55]    [Pg.137]    [Pg.36]    [Pg.152]    [Pg.153]    [Pg.166]    [Pg.192]    [Pg.523]    [Pg.530]    [Pg.535]    [Pg.545]    [Pg.614]    [Pg.616]    [Pg.617]    [Pg.654]    [Pg.673]    [Pg.673]    [Pg.721]    [Pg.781]   
See also in sourсe #XX -- [ Pg.140 , Pg.156 , Pg.157 ]

See also in sourсe #XX -- [ Pg.140 , Pg.156 , Pg.157 ]




SEARCH



Nitric oxide nucleophilic attack

Nucleophile Nucleophilic attack

Nucleophile attack

Nucleophiles attack

Nucleophilic attack

Nucleophilic attack oxidative addition reactions

Nucleophilic oxidation

Oxidation nucleophiles

Oxidative attack

Pyridazine 1-oxides, nucleophilic attack

© 2024 chempedia.info