Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nuclear reactions neutron-capture

Occurrence and Recovery. Rhenium is one of the least abundant of the naturally occurring elements. Various estimates of its abundance in Earth s cmst have been made. The most widely quoted figure is 0.027 atoms pet 10 atoms of silicon (0.05 ppm by wt) (3). However, this number, based on analyses for the most common rocks, ie, granites and basalts, has a high uncertainty. The abundance of rhenium in stony meteorites has been found to be approximately the same value. An average abundance in siderites is 0.5 ppm. In lunar materials, Re, when compared to Re, appears to be enriched by 1.4% to as much as 29%, relative to the terrestrial abundance. This may result from a nuclear reaction sequence beginning with neutron capture by tungsten-186, followed by p-decay of of a half-hfe of 24 h (4) (see Extraterrestrial materials). [Pg.160]

The confinement region in which nuclear fusion proceeds is surrounded by a blanket in which the neutrons produced by the fusion reaction are captured to produce tritium. Because of its favorable cross section for neutron capture, lithium is the favored blanket material. Various lithium blanket... [Pg.14]

The basic requirements of a reactor are 1) fissionable material in a geometry that inhibits the escape of neutrons, 2) a high likelihood that neutron capture causes fission, 3) control of the neutron production to prevent a runaway reaction, and 4) removal of the heat generated in operation and after shutdown. The inability to completely turnoff the heat evolution when the chain reaction stops is a safety problem that distinguishes a nuclear reactor from a fossil-fuel burning power plant. [Pg.205]

The process of j3-decay in some respects offers simpler radiochemical consequences than do neutron capture and other reactions, because (a) the nuclear recoil energy is very low and (b) the decay schemes, and thus the probability of Auger cascades, are generally well known. Despite this, no clear mechanisms have been worked out. [Pg.234]

C22-0054. Identify the compound nucleus and final product resulting from each of the following nuclear reactions (a) carbon-12 captures a neutron and then emits a proton (b) the nuclide with eight protons and eight neutrons captures an a particle and emits a y ray and (c) curium-247 is bombarded with boron-11, and the product loses three neutrons. [Pg.1616]

Americium - the atomic number is 95 and the chemical symbol is Am. The name derives from America where it was first synthesized in a series of successive neutron capture reactions in the element plutonium, Pu, in a nuclear reactor in 1944 by American scientists under Glenn T. Seaborg at the University of California lab in Berkeley, California, using the nuclear reaction Pu ( n, y) Y) P Am. Americium is the sixth element in the Actinide... [Pg.4]

Hydrogen atoms and part of He are believed to have been created during the Big Bang by proton-electron combinations. Most nuclides lighter than iron were created by nuclear fusion reactions in stellar interiors (cf table 11.1). Nuclides heavier than the Fe-group elements (V, Cr, Mn, Fe, Co, Ni) were formed by neutron capture on Fe-group seed nuclei. Two types of neutron capture are possible slow (s-process) and rapid (r-process). [Pg.708]

In addition to all these fusion and neutron capture processes, there is a further type of nuclear reaction, called spallation. Rather than fusing together, nuclei are smashed up or chipped to produce smaller species. This process is thought to be the origin of most of the lithium, beryllium and boron in the Universe. [Pg.70]

The following stage is core collapse caused by electron capture or photodisintegration of iron. According to the traditional view, collapse leads to formation of a neutron star which cools by neutrino emission and decompression of matter when it reaches nuclear density (10 g cm ). The rebound that follows generates a shock wave which is capable of reigniting a good few nuclear reactions as it moves back out across the stellar envelope. [Pg.101]

Just to reiterate what we have said, neutron capture is the only valid channel towards the extreme complexity of gold (Z = 79). Reactions involving charged particles are energetically unfavourable and moreover inhibited by insurmountable electrical barriers. Because of the strong electrical repulsion between heavy nuclei (which thus contain many protons), the classic thermonuclear fusion reactions are ineffective, and we are forced to accept the idea that nuclear species beyond iron are produced by a process other than thermonuclear fusion. This process is neutron capture. [Pg.166]

As a nuclear reaction, the s process is relatively well understood, but the problem lies in identifying an astrophysical site for it and determining the relevant physical parameters, such as neutron flux, mean time separating two neutron captures, and temperature. It has been shown that the most propitious temperatures are those of helium fusion. Added to the fact that the surfaces of certain red giants are rich in s isotopes, such as radioactive technetium and barium, this observation confirms the idea that the s process may be related to helium fusion regions in stars. [Pg.166]

Am-241 may be prepared in a nuclear reactor as a result of successive neutron capture reactions by plutonium isotopes ... [Pg.16]

Heavier isotopes Es-253, Es-254 and Es-255 can be produced in a nuclear reactor by multiple neutron capture reactions that may occur when uranium, neptunium and plutonium isotopes are irradiated under intense neutron flux. These and other isotopes also are produced during thermonuclear explosions. [Pg.292]

For example, uranium-238 when bombarded with fluorine-19 produced Md-252. Also, certain nuclear reactions carried out by heavy ion projectiles involve stripping reactions in which some protons and neutrons may transfer from the projectiles onto the target nucleus, but the latter might not capture the projectile heavy ion. [Pg.558]

Protactinium-233 is produced by the beta decay of the short-lived thorium-233. Thorium-233 is obtained by neutron capture of natural thorium-232. The nuclear reactions are as follows ... [Pg.782]

Fig. 2. Schematic illustration of the ideal open nuclear fuel cycle (NRC 2003). In this case, there is no reprocessing. Interim storage may last for tens of years so that the heat and radioactivity are much less prior to handling and final disposal. The spent fuel still contains fissile nuclides, such as 235U and 239Pu (generated by neutron capture reactions with 238U). Fig. 2. Schematic illustration of the ideal open nuclear fuel cycle (NRC 2003). In this case, there is no reprocessing. Interim storage may last for tens of years so that the heat and radioactivity are much less prior to handling and final disposal. The spent fuel still contains fissile nuclides, such as 235U and 239Pu (generated by neutron capture reactions with 238U).

See other pages where Nuclear reactions neutron-capture is mentioned: [Pg.201]    [Pg.206]    [Pg.213]    [Pg.865]    [Pg.356]    [Pg.207]    [Pg.209]    [Pg.209]    [Pg.1554]    [Pg.7]    [Pg.663]    [Pg.276]    [Pg.278]    [Pg.113]    [Pg.2]    [Pg.886]    [Pg.266]    [Pg.198]    [Pg.1754]    [Pg.45]    [Pg.128]    [Pg.51]    [Pg.53]    [Pg.126]    [Pg.302]    [Pg.95]    [Pg.29]    [Pg.386]    [Pg.48]    [Pg.1800]    [Pg.19]    [Pg.143]    [Pg.160]    [Pg.141]   
See also in sourсe #XX -- [ Pg.38 ]




SEARCH



Neutron capture

Neutron capture reactions

Neutron reactions

Neutrons nuclear capture

Nuclear reactions

© 2024 chempedia.info