Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nuclear magnetic resonance description

Whatever the derivative considered, the nuclear magnetic resonance spectra of thiazoles are remarkably simple and apparently univoque. The first proton NMR spectrum of thiazole was described by Bak et al. (171). It was followed by a series of works establishing a systematic description... [Pg.66]

No detailed description of H or 13C nuclear magnetic resonance (NMR) spectroscopy has been reported on this class of compound. A general description of the NMR spectra of compound 25 is given in the synthesis of a pyrrole <1998JOC9131>. [Pg.46]

While the broad mission of the National Bureau of Standards was concerned with standard reference materials, Dr. Isbell centered the work of his laboratory on his long interest in the carbohydrates and on the use of physical methods in their characterization. Infrared spectroscopy had shown promise in providing structural and conformational information on carbohydrates and their derivatives, and Isbell invited Tipson to conduct detailed infrared studies on the extensive collection of carbohydrate samples maintained by Isbell. The series of publications that rapidly resulted furnished a basis for assigning conformations to pyranoid sugars and their derivatives. Although this work was later to be overshadowed by application of the much more powerful technique of nuclear magnetic resonance spectroscopy, the Isbell— Tipson work helped to define the molecular shapes involved and the terminology required for their description. [Pg.425]

A systematic development of relativistic molecular Hamiltonians and various non-relativistic approximations are presented. Our starting point is the Dirac one-fermion Hamiltonian in the presence of an external electromagnetic field. The problems associated with generalizing Dirac s one-fermion theory smoothly to more than one fermion are discussed. The description of many-fermion systems within the framework of quantum electrodynamics (QED) will lead to Hamiltonians which do not suffer from the problems associated with the direct extension of Dirac s one-fermion theory to many-fermion system. An exhaustive discussion of the recent QED developments in the relevant area is not presented, except for cursory remarks for completeness. The non-relativistic form (NRF) of the many-electron relativistic Hamiltonian is developed as the working Hamiltonian. It is used to extract operators for the observables, which represent the response of a molecule to an external electromagnetic radiation field. In this study, our focus is mainly on the operators which eventually were used to calculate the nuclear magnetic resonance (NMR) chemical shifts and indirect nuclear spin-spin coupling constants. [Pg.435]

This article will review the impact of two powerful new techniques for characterizing epoxy resins at the molecular level — Fourier transform infrared spectroscopy (FT-IR) and high resolution nuclear magnetic resonance (NMR) of solids. Fortunately, these two techniques are not inhibited appreciably by the insoluble nature of the cured resin. Consequently, substantial structural information at the molecular level can be obtained. In this article, the basis of the methods will be briefly described in order to appreciate the nature of the methods followed by a description of the work on epoxies to date and finally some indication will be given of the anticipated contributions of these methods in the future. [Pg.74]

Electron spin resonance (ESR) measures the absorption spectra associated with the energy states produced from the ground state by interaction with the magnetic field. This review deals with the theory of these states, their description by a spin Hamiltonian and the transitions between these states induced by electromagnetic radiation. The dynamics of these transitions (spin-lattice relaxation times, etc.) are not considered. Also omitted are discussions of other methods of measuring spin Hamiltonian parameters such as nuclear magnetic resonance (NMR) and electron nuclear double resonance (ENDOR), although results obtained by these methods are included in Sec. VI. [Pg.90]

This volume of the Handbook illustrates the rich variety of topics covered by rare earth science. Three chapters are devoted to the description of solid state compounds skutteru-dites (Chapter 211), rare earth-antimony systems (Chapter 212), and rare earth-manganese perovskites (Chapter 214). Two other reviews deal with solid state properties one contribution includes information on existing thermodynamic data of lanthanide trihalides (Chapter 213) while the other one describes optical properties of rare earth compounds under pressure (Chapter 217). Finally, two chapters focus on solution chemistry. The state of the art in unraveling solution structure of lanthanide-containing coordination compounds by paramagnetic nuclear magnetic resonance is outlined in Chapter 215. The potential of time-resolved, laser-induced emission spectroscopy for the analysis of lanthanide and actinide solutions is presented and critically discussed in Chapter 216. [Pg.666]


See other pages where Nuclear magnetic resonance description is mentioned: [Pg.66]    [Pg.66]    [Pg.1590]    [Pg.444]    [Pg.458]    [Pg.516]    [Pg.373]    [Pg.2]    [Pg.24]    [Pg.544]    [Pg.135]    [Pg.297]    [Pg.50]    [Pg.119]    [Pg.34]    [Pg.66]    [Pg.218]    [Pg.94]    [Pg.590]    [Pg.538]    [Pg.74]    [Pg.365]    [Pg.40]    [Pg.76]    [Pg.97]    [Pg.536]    [Pg.72]    [Pg.17]    [Pg.82]    [Pg.7]    [Pg.171]    [Pg.636]    [Pg.29]    [Pg.261]    [Pg.216]    [Pg.154]    [Pg.200]    [Pg.116]    [Pg.30]    [Pg.124]    [Pg.2]    [Pg.669]   
See also in sourсe #XX -- [ Pg.31 ]

See also in sourсe #XX -- [ Pg.397 , Pg.408 ]

See also in sourсe #XX -- [ Pg.729 ]




SEARCH



Nuclear magnetic resonance descriptive examples

Nuclear magnetic resonance quantum mechanical description

© 2024 chempedia.info