Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nuclear reactors heavy water

The main technological uses for UO2 are found in the nuclear fuel cycle as the principal component for light and heavy water reactor fuels. Uranium dioxide is also a starting material for the synthesis of UF [10049-14-6] 6 (both critical for the production of pure uranium metal and... [Pg.324]

There are various types of nuclear power reactors, including boiling water reactors (BWR) and pressurized water reactors (PLWR or LWR), which are both light-water reactor (LWR) designs and are cooled and moderated by water. There also are pressurized heavy-water reactor (PHWR or HWR) designs. [Pg.62]

Because early Canadian reactors used heavy water, and because it is also fundamentally the most efficient moderator, Canada naturally adopted the heavy water reactor for the development of a nuclear power system. By using heavy water both as moderator and as coolant, and by refuelling with the reactor at power, it was possible to develop the CANDU system to operate efficiently and economically with natural uranium fuel. This in turn resulted in the simplest possible fuel cycle. [Pg.323]

HELP HEU HFO HFR HLW HREE HRL HT HTGR HWR Hydrological evaluation of landfill performance Highly enriched uranium Hydrous ferrous oxide or ferric hydroxide Hot fractured-rock High-level nuclear waste Heavy rare earth elements (Gd-Lu) Hard rock laboratory High temperature High-temperature gas-cooled reactor Heavy water reactor... [Pg.684]

The basic design of most nuclear reactors is similar, but several types of reactors are used throughout the world. In the United States most reactors use plain water as the coolant. Reactors using ordinary water are called light water reactors. Light water reactors can be pressurized to approximately 150 atmospheres to keep the primary coolant in the liquid phase at temperatures of approximately 300°C. The heat from the pressurized water is used to heat secondary water to generate steam. In a boiling water reactor, water in the core is allowed to boil. The steam produced powers the turbines directly. Heavy water reactors use water in... [Pg.287]

Radioactive waste treatment applications have been reported [3-9] for the laundry wastes from nuclear power plants and mixed laboratory wastes. Another interesting application of reverse osmosis process is in decontamination of boric acid wastes from pressurized heavy water reactors (PHWRs), which allows for the recovery of boric acid, by using the fact that the latter is relatively undissociated and hence wdl pass with water through the membrane while most of the radioactivity is retained [10]. Reverse osmosis was evaluated for treating fuel storage pool water, and for low-level liquid effluents from reprocessing plants. [Pg.831]

There are a number of different nuclear reactor types. The most widely used is the light-water reactor, but graphitemoderated types, which are cooled with light-water or gas, are in operation, also heavy-water reactors. The graphitemoderated high temperature reactor is in a state of halted development, as are gas-cooled reactors and fast breeder reactors. [Pg.594]

Heavy-water reactors utilize heavy water (D2O) as a moderator. They can be operated with natural uranium, since the capture cross-section for the thermal neutrons, necessary for controlling nuclear chain reactions, is very low for D2O compared with H2O. Enrichment of U is therefore not necessary. The high price of heavy water (only present as 0.015% in natural water) is, however, a disadvantage. The resulting higher investment costs... [Pg.597]

Heavy water is not only the most important component, but also the major cost contributor to the nuclear power program, which utilizes pressurized heavy water reactors. [Pg.1233]

The main advantage of a heavy water reactor is that it eliminates the need for building expensive uranium enrichment facilities. However, D2O must be prepared by either fractional distillation or electrolysis of ordinary water, which can be very expensive considering the amount of water used in a nuclear reactor. In countries where hydroelectric power is abundant, the cost of producing D2O by electrolysis can be reasonably low. At present, Canada is the only nation successfully using heavy water nuclear reactors. The fact that no enriched uranium is required in a heavy water reactor allows a country to enjoy the benefits of nuclear power without undertaking work that is closely associated with weapons technology. [Pg.920]

Nuclear reactors use the heat from a controlled nuclear fission reaction to produce power. The three important types of reactors are light water reactors, heavy water reactors, and breeder reactors. [Pg.931]

In the CANDU heavy-water reactor the dominant source of tritium is the deuterium activation reaction of Eq. (8.53). The data given in Prob. 3.3 for the Douglas Point Nuclear Power Station provide a basis for estimating the rate of production of tritium in the heavy-water moderator and coolant ... [Pg.395]

Of the three moderators that make possible a fission chain reaction in natural uranium, heavy water, graphite, or beryllium, heavy water has become the preferred material. It is used both as coolant and moderataor in heavy-water reactors, which are the exclusive source of nuclear power in Canada, Argentina, and Pakistan, are being used in India, and are being considered in other countries wishing to have a nuclear power system not dependent on a source of enriched uranium. [Pg.628]

In the current structure of nuclear power, light water reactors (LWRs) are predominant over a small number of heavy water reactors (HWRs), and even smaller number of fast breeder reactors (FBRs). However, an increase of FBR share can be predicted for the future, taking into account their unique properties. First of all, there is the capability of nuclear fuel breeding by involving into the fuel cycle. Secondly, there is the fast reactor s flexibility permitting its use as plutonium incinerators and minor actinides transmutation. Thus, unless new sources of energy are found, the development of nuclear power will be necessarily based on fast breeder reactors. [Pg.1]

Consistent with these publications, the IAEA in 2002 issued a detailed report on Accident Analysis for Nuclear Power Plants (Safety Reports Series No. 23) that provides practical guidance for performing accident analysis. That report covers the steps required for accident analyses, i.e. selection of initiating events and acceptance criteria, selection of computer codes and modelling assumptions, preparation of input data and presentation of the calculation results. It also discusses aspects that need to be considered to ensure that the final accident analysis is of acceptable quality. Separate IAEA Safety Reports deal with specific features of individual reactor types, such as pressurized water reactors, boiling water reactors, pressurized heavy water reactors and RBMKs. [Pg.67]


See other pages where Nuclear reactors heavy water is mentioned: [Pg.220]    [Pg.248]    [Pg.19]    [Pg.1647]    [Pg.324]    [Pg.940]    [Pg.951]    [Pg.952]    [Pg.969]    [Pg.981]    [Pg.225]    [Pg.206]    [Pg.335]    [Pg.873]    [Pg.883]    [Pg.232]    [Pg.48]    [Pg.708]    [Pg.313]    [Pg.642]    [Pg.696]    [Pg.65]    [Pg.110]    [Pg.114]    [Pg.87]    [Pg.2]    [Pg.878]    [Pg.927]    [Pg.15]    [Pg.224]   
See also in sourсe #XX -- [ Pg.597 ]




SEARCH



Heavy water, 148 reactor

Nuclear power reactors heavy water reactor

Nuclear power reactors, heavy-water

Nuclear reactors

Nuclear reactors heavy water reactor

Nuclear reactors heavy water reactor

Reactor water

Water heavy

© 2024 chempedia.info