Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nuclear fuels, solvent extraction

In addition, solvent extraction is appHed to the processing of other metals for the nuclear industry and to the reprocessing of spent fuels (see Nuclearreactors). It is commercially used for the cobalt—nickel separation prior to electrowinning in chloride electrolyte. Both extraction columns and mixer-settlers are in use. [Pg.172]

Nuclear Waste. NRC defines high level radioactive waste to include (/) irradiated (spent) reactor fuel (2) Hquid waste resulting from the operation of the first cycle solvent extraction system, and the concentrated wastes from subsequent extraction cycles, in a faciHty for reprocessing irradiated reactor fuel and (3) soHds into which such Hquid wastes have been converted. Approximately 23,000 metric tons of spent nuclear fuel has been stored at commercial nuclear reactors as of 1991. This amount is expected to double by the year 2001. [Pg.92]

Before leaving ionic liquids it is worth mentioning their potential value in separation processes. Organic solvents are frequently used in multiphase extraction processes and pose the same problems in terms of VOC containment and recovery as they do in syntheses, hence ionic liquids could offer a more benign alternative. Interesting applications along this line which have been studied include separation of spent nuclear fuel from other nuclear waste and extraction of the antibiotic erythromycin-A. [Pg.161]

The effect of irradiation on the extractability of sulfoxides towards plutonium, uranium and some fission products were studied by Subramanian and coworkers . They studied mainly the effect of irradiation on dihexyl sulfoxide (DHSO) and found that irradiation did not change the distribution coefficient for Ru, Eu and Ce but increases the distribution coefficient for Zr and Pu. When comparing DHSO and tributyl phosphate (TBP), the usual solvent for the recovery and purification of plutonium and uranium from spent nuclear fuels, the effect of irradiation to deteriorate the extraction capability is much larger in TBP. Lan and coworkers studied diphenyl sulfoxides as protectors for the gamma radiolysis of TBP. It was found that diphenyl sulfoxide can accept energy from two different kinds of excited TBP and thus inhibits the decomposition of the latter. [Pg.911]

Butex A process for separating the radioactive components of spent nuclear fuel by solvent extraction from nitric acid solution, using diethylene glycol dibutyl ether (also called Butex, or dibutyl carbitol) as the solvent. Developed by the Ministry of Supply (later the UK Atomic Energy Authority) in the late 1940s. Operated at Windscale from 1952 until 1964 when it was superseded by the Purex process. [Pg.47]

Purex [Plutonium and uranium recovery by extraction] A process for the solvent extraction of plutonium from solutions of uranium and fission products, obtained by dissolving spent nuclear fuel elements in nitric acid. The solvent is tri-n-butyl phosphate (TBP) in... [Pg.218]

Redox [Reduction oxidation] A process for separating the components of used nuclear fuel by solvent extraction. It was the first process to be used and was brought into operation at Hanford, United States, in 1951, but was superseded in 1954 by the Purex process. The key to the process was the alternate reduction and oxidation of the plutonium, hence the name. The solvent was Hexone (4-methyl-2-pentanone, methyl isobutyl ketone), so the process was also known as the Hexone process. The aqueous phase contained a high... [Pg.224]

SREX [Strontium extraction] A process for removing strontium-90 from aqueous wastes from nuclear fuel processing, by solvent extraction into a solution of 18-crown-6 in octanol. Developed by E. P. Horwitz at the Argonne National Laboratory, Chicago, IL, in 1990. [Pg.253]

Uses Plasticizer for lacquers, plastics, cellulose esters, and vinyl resins heat-exchange liquid carbonless copy paper systems in aircraft hydraulic fluids solvent extraction of metal ions from solution of reactor products uranium extraction and nuclear fuel reprocessing pigment grinding assistant antifoaming agent solvent for nitrocellulose and cellulose acetate. [Pg.1073]

The second part deals with applications of solvent extraction in industry, and begins with a general chapter (Chapter 7) that involves both equipment, flowsheet development, economic factors, and environmental aspects. Chapter 8 is concerned with fundamental engineering concepts for multistage extraction. Chapter 9 describes contactor design. It is followed by the industrial extraction of organic and biochemical compounds for purification and pharmaceutical uses (Chapter 10), recovery of metals for industrial production (Chapter 11), applications in the nuclear fuel cycle (Chapter 12), and recycling or waste treatment (Chapter 14). Analytical applications are briefly summarized in Chapter 13. The last chapters, Chapters 15 and 16, describe some newer developments in which the principle of solvent extraction has or may come into use, and theoretical developments. [Pg.31]

In 1942, the Mallinckrodt Chemical Company adapted a diethylether extraction process to purify tons of uranium for the U.S. Manhattan Project [2] later, after an explosion, the process was switched to less volatile extractants. For simultaneous large-scale recovery of the plutonium in the spent fuel elements from the production reactors at Hanford, United States, methyl isobutyl ketone (MIBK) was originally chosen as extractant/solvent in the so-called Redox solvent extraction process. In the British Windscale plant, now Sellafield, another extractant/solvent, dibutylcarbitol (DBC or Butex), was preferred for reprocessing spent nuclear reactor fuels. These early extractants have now been replaced by tributylphosphate [TBP], diluted in an aliphatic hydrocarbon or mixture of such hydrocarbons, following the discovery of Warf [9] in 1945 that TBP separates tetravalent cerium from... [Pg.509]

The solvent extraction process that uses TBP solutions to recover plutonium and uranium from irradiated nuclear fuels is called Purex (plutonium uranium extraction). The Purex process provides recovery of more than 99% of both uranium and plutonium with excellent decontamination of both elements from fission products. The Purex process is used worldwide to reprocess spent reactor fuel. During the last several decades, many variations of the Purex process have been developed and demonstrated on a plant scale. [Pg.510]

High-grade pitchblende ores are leached with nitric acid to recover uranium. Extraction of uranium from nitrate solutions is usually performed with TBP. TBP-based solvents are used in several areas of the nuclear industry, especially for reprocessing of spent nuclear fuels and for refining the uranium product of the Amex and Dapex processes. Extraction of uranium by TBP solvents is described in sections 12.3.4 and 12.5. [Pg.516]


See other pages where Nuclear fuels, solvent extraction is mentioned: [Pg.141]    [Pg.150]    [Pg.7197]    [Pg.7199]    [Pg.141]    [Pg.150]    [Pg.7197]    [Pg.7199]    [Pg.70]    [Pg.202]    [Pg.173]    [Pg.956]    [Pg.1262]    [Pg.867]    [Pg.116]    [Pg.120]    [Pg.121]    [Pg.153]    [Pg.194]    [Pg.195]    [Pg.911]    [Pg.461]    [Pg.529]    [Pg.826]    [Pg.114]    [Pg.108]    [Pg.509]    [Pg.553]    [Pg.381]    [Pg.394]    [Pg.394]   


SEARCH



Nuclear extract

Nuclear solvents

Solvent extraction in nuclear fuel reprocessing

Solvent extraction irradiated nuclear fuels

Solvent extraction nuclear fuel cycle

Solvent extraction nuclear fuel reprocessing

Solvent extraction reprocessing irradiated nuclear fuels

© 2024 chempedia.info