Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nonspherical particles electrostatics

Notable progress in analyzing nonspherical particles has been made by Fuchs (1975), who calculated absorption by cubes in the electrostatics approximation and applied the results to experimental data for MgO and NaCl. We shall discuss Fuchs s results at the end of Section 12.3. Langbein (1976) also did calculations for rectangular parallelepipeds, including cubes, which give valuable insights into nonspherical shape effects. Because the cube is a common shape of microcrystals, such as MgO and the alkali halides, these theoretical predictions have been used several times to interpret experimental data. We shall do the same for MgO. Our theoretical treatment of nonsphericity, however, is based on ellipsoids. Despite its simplicity, this method predicts correctly many of the nonspherical effects. [Pg.342]

For nonspherical particles, Muller (1928) postulated that since the diffusion equation applicable to aerosol problems is the same (except for definition of terms) as the general equation for electric fields (Laplace s equation), there should be analogs among the electrostatic terms for various properties of coagulation. For example, the potential should be analogous to particle number concentration, and field strength to particle agglomeration rate. Zebel (1966) pointed out that... [Pg.169]

The emission of the metal particles may thus originate from a band-to-band transition in the metal particle, which occurs at about 516 nm for gold [60, 119]. As stated above, the nature of the interaction of the dendrimer (PAMAM) host is still uncertain, there could be very strong electrostatic interactions that may play a part in the enhancement of the metal particles quantum efficiency for emission. However, one would expect that this enhancement would result in slightly distorted emission spectra, different from what was observed for the gold dendrimer nanocomposite. Further work is necessary to completely characterize the manner in which the dendrimer encapsulation enhances the emission of the metal nanoparticles. With further synthetic work in preparation of different size nanoparticles (in other words elongated and nonspherical shape particles, including nanorods) it may be possible to develop the accurate description of a... [Pg.539]


See other pages where Nonspherical particles electrostatics is mentioned: [Pg.423]    [Pg.427]    [Pg.32]    [Pg.343]    [Pg.64]    [Pg.31]    [Pg.252]   
See also in sourсe #XX -- [ Pg.428 , Pg.432 ]




SEARCH



Electrostatic particles

© 2024 chempedia.info