Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nonlinear other

F-test Objective Computerized Uses standard statistics Requires large number of samples Low statistical power Usually not applicable to historical data Not specific for nonlinearity other defects in the data may be flagged as nonlinearity... [Pg.436]

Additional compheations in milhng arise as fines build up in the powder bed [42] (a) the fracture rate of alt particle sizes decreases, the result, apparently, of a cushioning effect by the fines that minimizes stress and fracture (b) fracture kinetics become nonlinear. Other factors, such as coating of equipment surfaces by fines, also affect the efficiency of the milling operation. [Pg.74]

While many methods for parameter estimation have been proposed, experience has shown some to be more effective than others. Since most phenomenological models are nonlinear in their adjustable parameters, the best estimates of these parameters can be obtained from a formalized method which properly treats the statistical behavior of the errors associated with all experimental observations. For reliable process-design calculations, we require not only estimates of the parameters but also a measure of the errors in the parameters and an indication of the accuracy of the data. [Pg.96]

A fiill solution of tlie nonlinear radiation follows from the Maxwell equations. The general case of radiation from a second-order nonlinear material of finite thickness was solved by Bloembergen and Pershan in 1962 [40]. That problem reduces to the present one if we let the interfacial thickness approach zero. Other equivalent solutions involved tlie application of the boundary conditions for a polarization sheet [14] or the... [Pg.1277]

For other purposes, obtaining a measure of the adsorbate surface density directly from the experiment is desirable. From this perspective, we introduce a simple model for the variation of the surface nonlinear susceptibility with adsorbate coverage. An approximation that has been found suitable for many systems is... [Pg.1288]

Depending on the relative phase difference between these temis, one may observe various experimental spectra, as illustrated in figure Bl.5.14. This type of behaviour, while potentially a source of confiision, is familiar for other types of nonlinear spectroscopy, such as CARS (coherent anti-Stokes Raman scattering) [30. 31] and can be readily incorporated mto modelling of measured spectral features. [Pg.1295]

In this chapter we review some of the most important developments in recent years in connection with the use of optical teclmiques for the characterization of surfaces. We start with an overview of the different approaches available to tire use of IR spectroscopy. Next, we briefly introduce some new optical characterization methods that rely on the use of lasers, including nonlinear spectroscopies. The following section addresses the use of x-rays for diffraction studies aimed at structural detenninations. Lastly, passing reference is made to other optical teclmiques such as ellipsometry and NMR, and to spectroscopies that only partly depend on photons. [Pg.1780]

Wlien working with any coordinate system other than Cartesians, it is necessary to transfonn finite displacements between Cartesian and internal coordinates. Transfomiation from Cartesians to internals is seldom a problem as the latter are usually geometrically defined. However, to transfonn a geometry displacement from internal coordinates to Cartesians usually requires the solution of a system of coupled nonlinear equations. These can be solved by iterating the first-order step [47]... [Pg.2347]

This section will outline the simplest models for the spectra of both metal and semiconductor nanocrystals. The work described here has illustrated that, in order to achieve quantitative agreement between theory and experiment, a more detailed view of the molecular character of clusters must be incoriDorated. The nature and bonding of the surface, in particular, is often of crucial importance in modelling nanocrystal optical properties. Wlrile this section addresses the linear optical properties of nanocrystals, both nonlinear optical properties and the photophysics of these systems are also of great interest. The reader is referred to the many excellent review articles for more in-depth discussions of these and other aspects of nanocrystal optical properties [147, 148, 149, 150, 151, 152, 153 and 1541. [Pg.2908]

The net signal is then modified by a so-called transfer function and sent as output to other neurons. The most widely used transfer function is sigmoidal it has two plateau areas having the values zero and one. and between these an area in which it is increasing nonlinearly. Figure 9-15 shows an example of a sigmoidal transfer function. [Pg.453]

Chemistry produces many materials, other than drugs, that have to be optimized in their properties and preparation. Chemoinformatics methods will be used more and more for the elucidation and modeling of the relationships between chemical structure, or chemical composition, and many physical and chemical properties, be they nonlinear optical properties, adhesive power, conversion of light into electrical energy, detergent properties, hair-coloring suitabHty, or whatever. [Pg.625]

These expressions are only correct for wave functions that obey the Hellmann-Feynman theorem. Flowever, these expressions have been used for other methods, where they serve as a reasonable approximation. Methods that rigorously obey the Flellmann-Feynman theorem are SCF, MCSCF, and Full CF The change in energy from nonlinear effects is due to a change in the electron density, which creates an induced dipole moment and, to a lesser extent, induced higher-order multipoles. [Pg.257]

Once the least-squares fits to Slater functions with orbital exponents 1.0 are available, fits to Slater functions with other orbital exponents can be obtained by simply multiplying the a s in the above three equations by It remains to be determined what Slater orbital exponents to use in electronic structure calculations. The two possibilities may be to use the best atom expo-nents( = 1.0 for H, for example) or to optimize exponents in each calculation. The best atom exponents might be a rather poor choice for molecular environments, and optimization of nonlinear exponents is not practical for large molecules, where the dimension of the space to be searched is very large. Acompromise is to use a set of standard exponents where the average values of exponents are optimized for a set of small molecules. The recommended STO-3G exponents are... [Pg.256]

In this chapter we analyse a wide class of equilibrium problems with cracks. It is well known that the classical approach to the crack problem is characterized by the equality type boundary conditions considered at the crack faces, in particular, the crack faces are considered to be stress-free (Cherepanov, 1979, 1983 Kachanov, 1974 Morozov, 1984). This means that displacements found as solutions of these boundary value problems do not satisfy nonpenetration conditions. There are practical examples showing that interpenetration of crack faces may occur in these cases. An essential feature of our consideration is that restrictions of Signorini type are considered at the crack faces which do not allow the opposite crack faces to penetrate each other. The restrictions can be written as inequalities for the displacement vector. As a result a complete set of boundary conditions at crack faces is written as a system of equations and inequalities. The presence of inequality type boundary conditions implies the boundary problems to be nonlinear, which requires the investigation of corresponding boundary value problems. In the chapter, plates and shells with cracks are considered. Properties of solutions are established existence of solutions, regularity up to the crack faces, convergence of solutions as parameters of a system are varying and so on. We analyse different constitutive laws elastic, viscoelastic. [Pg.69]


See other pages where Nonlinear other is mentioned: [Pg.156]    [Pg.174]    [Pg.517]    [Pg.171]    [Pg.156]    [Pg.174]    [Pg.517]    [Pg.171]    [Pg.115]    [Pg.253]    [Pg.887]    [Pg.890]    [Pg.895]    [Pg.1185]    [Pg.1237]    [Pg.1265]    [Pg.1274]    [Pg.1279]    [Pg.1280]    [Pg.1281]    [Pg.1281]    [Pg.1289]    [Pg.1788]    [Pg.1788]    [Pg.1972]    [Pg.1974]    [Pg.1976]    [Pg.2109]    [Pg.2176]    [Pg.2332]    [Pg.124]    [Pg.503]    [Pg.24]    [Pg.244]    [Pg.143]    [Pg.109]    [Pg.341]    [Pg.34]    [Pg.136]   
See also in sourсe #XX -- [ Pg.76 ]




SEARCH



© 2024 chempedia.info