Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nonequilibrium Fluctuations in Corrosion

In the preceding sections, various types of fluctuations and instabilities essential to corrosion were examined. As a result, it was shown that a corrosion system involves various kinds of problems of stability and instability. Unlike thermodynamic equilibrium systems, in nonequilibrium systems like corrosion systems, a drastic change in the reaction state should be defined as a bifurcation phenomenon. [Pg.247]

The same kind of analysis was performed for anodic dissolution of copper through ion-transfer film where a current or potential oscillation [Pg.247]

There is another type of bifurcation called Turing bifurcation, which results in a spatial pattern rather than oscillation. A typical example where a new spatial structure emerges from a spatially unique situation is Benard s convection cells. These have been well examined and are formed with increasing heat conduction.53 Prigogine called this type of structure a dissipative structure.54-56 [Pg.248]

As shown in Fig. 21, in this case, the entire system is composed of an open vessel with a flat bottom, containing a thin layer of liquid. Steady heat conduction from the flat bottom to the upper hquid/air interface is maintained by heating the bottom constantly. Then as the temperature of the heat plate is increased, after the critical temperature is passed, the liquid suddenly starts to move to form steady convection cells. Therefore in this case, the critical temperature is assumed to be a bifurcation point. The important point is the existence of the standard state defined by the nonzero heat flux without any fluctuations. Below the critical temperature, even though some disturbances cause the liquid to fluctuate, the fluctuations receive only small energy from the heat flux, so that they cannot develop, and continuously decay to zero. Above the critical temperature, on the other hand, the energy received by the fluctuations increases steeply, so that they grow with time this is the origin of the convection cell. From this example, it can be said that the pattern formation requires both a certain nonzero flux and complementary fluctuations of physical quantities. [Pg.248]

Similarly, we can pick another example in crystal growth in melt. In this case, the growth occurs at the interface between the melt and a substrate that is kept at a constant temperature that is lower than the critical temperature for crystallization. The morphology characteristic of the instability is formed by the coupling of the heat flux and the surface-form fluctuation. This problem was first theoretically analyzed by Mullins and Sekerka.57-62 [Pg.248]


The second chapter is by Aogaki and includes a review of nonequilibrium fluctuations in corrosion processes. Aogaki begins by stating that metal corrosion is not a single electrode reaction, but a complex reaction composed of the oxidation of metal atoms and the reduction of oxidants. He provides an example in the dissolution of iron in an acidic solution. He follows this with a discussion of electrochemical theories on corrosion and the different techniques involved in these theories. He proceeds to discuss nonequilibrium fluctuations and concludes that we can again point out that the reactivity in corrosion is determined, not by its distance from the reaction equilibrium but by the growth processes of the nonequilibrium fluctuations. ... [Pg.651]

Review and discussion on nonequilibrium fluctuations in corrosion processes. [Pg.313]


See other pages where Nonequilibrium Fluctuations in Corrosion is mentioned: [Pg.247]   


SEARCH



Nonequilibrium

© 2024 chempedia.info