Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nonelectrochemical case

Frequently, electrochemical information can be interpreted better in the presence of additional nonelectrochemical information. Typically, however, there is one significant restriction electrochemical and spectroscopic techniques often do not detect exactly the same mechanisms. With spectroscopic measurements (e.g., infrared spectroscopy), products that are formed by electrochemical processes may be detected. In other cases (luminescence techniques) mechanisms may be found by which charge carriers are trapped and recombine. Other techniques (electroreflection studies) allow the nature of electronic transitions to be determined and provide information on the presence or absence of an electric field in the surface of an electrode. With no traditional technique, however, is it... [Pg.435]

As was cited in the case of immersion testing, most SCC test work is accomplished using mechanical, nonelectrochemical methods. It has been estimated that 90 percent of all SCC testing is handled by one of the following methods (1) constant strain, (2) constant load, or (3) precracked specimens. Prestressed samples, such as are shown in Fig. 25-17, have been used for laboratory and field SCC testing. The variable observed is time to failure or visible cracking. Unfortunately, such tests do not provide acceleration of failure. [Pg.22]

It appears in this discussion that electrochemical parameters and not substrate properties are the main deciding factors in determining the texture of deposits. This is indeed so when a deposit s thickness is 1 pum or more. In case of thinner deposits, the substrate plays an important role as well (see the text above). Another nonelectrochem-ical factor may be the codeposition of particulate matter with some metal deposits. To summarize, we note that texture is influenced mostly by deposition current density, as it is itself a function of bath pH, potential, and other parameters. Not surprising, then, is the fact that in the case of physical vapor deposition (PVD), the deposition rate is the determining factor in setting the texture of the coating. [Pg.280]

The selectivity of palladium and gold for alkene oxidation to aldehydes 28,29,170) was attributed initially to adsorption strength. However, electrooxidation in the presence of palladium ions indicates possible homogeneous alkene insertion, similar to the Wacker process 304). Homogeneous reaction is also involved in redox oxidations of hydrocarbons. In this case, the nature of the metal ions is expected to control selectivity. Indeed, toluene yields 20% benzaldehyde in electrolytes containing Ce salts, while oxidation proceeds to benzoic acid with Cr redox catalysts 311). In addition, the concentration of redox catalysts appears to affect yields in nonelectrochemical oxidation of ethylene large amounts of palladium chloride promote butene formation at the expense of acetaldehyde 312). Finally, the role of the electrolyte and solvent should not be ignored. For instance, electrooxidation of ethylene on carbon, in aqueous solution of acetic acid yields acetaldehyde 313) in the... [Pg.282]

The in vitro biocompatibility of CPs has been generally investigated by cell viability, proliferation and cytotoxicity assays of various cell types, including rat pheochromocy-toma cells (PC 12), rat Schwann cells, cardiac myoblasts, astrocytes, and various neural tissue explants [ 13,27,43,47]. Studies on a wide variety of CPs have indicated good in vitro cell responses, with minimal cytotoxicity and, in several cases, preferential adherence of cells to the CP surface, compared to conventional implant materials. However, the majority in vitro studies examine the passive or nonelectrochemically activated state of CPs. Due to the application-specific nature of biocompatibility, passive CP assessment, although a useful preliminary study, is an imperfect characterization of CP biological performance for most implant applications. [Pg.726]


See other pages where Nonelectrochemical case is mentioned: [Pg.2]    [Pg.71]    [Pg.2]    [Pg.71]    [Pg.610]    [Pg.105]    [Pg.65]    [Pg.147]    [Pg.240]    [Pg.12]    [Pg.111]    [Pg.1756]    [Pg.680]    [Pg.714]    [Pg.1695]    [Pg.677]    [Pg.279]    [Pg.19]    [Pg.240]    [Pg.543]    [Pg.33]    [Pg.461]    [Pg.71]   
See also in sourсe #XX -- [ Pg.71 , Pg.72 , Pg.73 , Pg.74 , Pg.75 ]




SEARCH



The Nonelectrochemical Case

© 2024 chempedia.info