Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nitrosyl oxide

The largest group of molybdenum(II) complexes is constituted by the nitrosyls (oxidation states being assigned on the somewhat arbitrary assumption that nitrogen monoxide, as a ligand, is NO+). Tables 6 and 7 give a selection of the compounds discussed. [Pg.1285]

NAliiOig, Aluminum nitrosyl oxide (Alii(NO)0 7), [12446-43 ]. 30 240 NC4H11 2H 2Nb05Ti,Titanate(l-). pentaoxoniobate-, hydrogen, compd. with 1-butanamine (2 1), [158282-33-8], 30 184... [Pg.285]

A similar intramolecular oxidation, but for the methyl groups C-18 and C-19 was introduced by D.H.R. Barton (1979). Axial hydroxyl groups are converted to esters of nitrous or hypochlorous acid and irradiated. Oxyl radicals are liberated and selectively attack the neighboring axial methyl groups. Reactions of the methylene radicals formed with nitrosyl or chlorine radicals yield oximes or chlorides. [Pg.286]

Acid Halogenides. For acid halogenides the name is formed from the corresponding acid radical if this has a special name (Sec. 3.1.2.10) for example, NOCl, nitrosyl chloride. In other cases these compounds are named as halogenide oxides with the ligands listed alphabetically for example, BiClO, bismuth chloride oxide VCI2O, vanadium(lV) dichloride oxide. [Pg.220]

The cooled, dried chlorine gas contains - 2% HCl and up to 10% O2, both of which are removed by Hquefaction. A full scale 600-t/day plant was built by Du Pont ia 1975. This iastaHatioa at Corpus Christi, Texas operates at 1.4 MPa (13.8 atm) and 120—180°C and uses tantalum-plated equipment and pipes. Oxidation of HCl Chloride by JSHtricHcid. The nitrosyl chloride [2696-92-6] route to chlorine is based on the strongly oxidi2iag properties of nitric acid... [Pg.504]

The practical problems He ia the separatioa of the chlorine from the hydrogea chloride and nitrous gases. The dilute nitric acid must be reconcentrated and corrosion problems are severe. Suggested improvements iaclude oxidation of concentrated solutions of chlorides, eg, LiCl, by nitrates, followed by separation of chlorine from nitrosyl chloride by distillation at 135°C, or oxidation by a mixture of nitric and sulfuric acids, separating the... [Pg.504]

The U.S. domestic commercial potassium nitrate of the 1990s contains 13.9% N, 44.1% I+O, 0—1.8% Cl, 0.1% acid insoluble, and 0.08% moisture. The material is manufactured by Vicksburg Chemical Co. using a process developed by Southwest Potash Division of AMAX Corp. This process uses highly concentrated nitric acid to catalyze the oxidation of by-product nitrosyl chloride and hydrogen chloride to the mote valuable chlorine (68). The much simplified overall reaction is... [Pg.232]

Nitrosyl chloride (178), nitrosyl chloride—hydrogen fluoride (NOF -3HF, NOF -6HF) (179), nitrous acid—hydrogen fluoride solutions (180,181), or nitrogen trioxide (prepared in situ from nitric oxide and oxygen) (27) can be used in place of sodium nitrite in the dia2oti2ation step. [Pg.322]

Binary Compounds. The mthenium fluorides are RuF [51621 -05-7] RuF [71500-16-8] tetrameric (RuF ) [14521 -18-7] (15), and RuF [13693-087-8]. The chlorides of mthenium are RUCI2 [13465-51-5] an insoluble RuCl [10049-08-8] which exists in an a- and p-form, mthenium trichloride ttihydrate [13815-94-6], RuCl3-3H2 0, and RuCl [13465-52-6]. Commercial RuCl3-3H2 0 has a variable composition, consisting of a mixture of chloro, 0x0, hydroxo, and often nitrosyl complexes. The overall mthenium oxidation state is closer to +4 than +3. It is a water-soluble source of mthenium, and is used widely as a starting material. Ruthenium forms bromides, RuBr2 [59201-36-4] and RuBr [14014-88-1], and an iodide, Rul [13896-65-6]. [Pg.177]

Toray. The photonitrosation of cyclohexane or PNC process results in the direct conversion of cyclohexane to cyclohexanone oxime hydrochloride by reaction with nitrosyl chloride in the presence of uv light (15) (see Photochemical technology). Beckmann rearrangement of the cyclohexanone oxime hydrochloride in oleum results in the evolution of HCl, which is recycled to form NOCl by reaction with nitrosylsulfuric acid. The latter is produced by conventional absorption of NO from ammonia oxidation in oleum. Neutralization of the rearrangement mass with ammonia yields 1.7 kg ammonium sulfate per kilogram of caprolactam. Purification is by vacuum distillation. The novel chemistry is as follows ... [Pg.430]

Whereas sulfonyl halides have been known for a long time and, especially the chlorides, have become of great synthetic value, sulfonyl cyanides were unknown until 1968. They were first prepared by van Leusen and co-workers from the reaction of sulfonylmethylenephos-phoranes with nitrosyl chloride. The same group also investigated part of their chemistry. Since then, two more, completely different, methods of synthesis were published from sulfinates with cyanogen chloride,and by the oxidation of thiocyanates. ... [Pg.90]


See other pages where Nitrosyl oxide is mentioned: [Pg.207]    [Pg.57]    [Pg.174]    [Pg.174]    [Pg.604]    [Pg.174]    [Pg.337]    [Pg.174]    [Pg.337]    [Pg.62]    [Pg.240]    [Pg.277]    [Pg.289]    [Pg.297]    [Pg.207]    [Pg.57]    [Pg.174]    [Pg.174]    [Pg.604]    [Pg.174]    [Pg.337]    [Pg.174]    [Pg.337]    [Pg.62]    [Pg.240]    [Pg.277]    [Pg.289]    [Pg.297]    [Pg.40]    [Pg.278]    [Pg.280]    [Pg.290]    [Pg.348]    [Pg.230]    [Pg.248]    [Pg.441]    [Pg.66]    [Pg.176]    [Pg.177]    [Pg.174]    [Pg.204]    [Pg.318]    [Pg.67]   
See also in sourсe #XX -- [ Pg.174 ]

See also in sourсe #XX -- [ Pg.174 ]




SEARCH



© 2024 chempedia.info