Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nitrones activities

Scheme 6.3 Product range of the addition reactions of ketene silyl acetals to various nitrones activated by thiourea catalyst... Scheme 6.3 Product range of the addition reactions of ketene silyl acetals to various nitrones activated by thiourea catalyst...
Nitrone Activation. The nucleophilic addition to aldonitrones depends on the nature of the metal involved and the presence/ absence of an activator. Thus, allylsilanes add to aromatic nitrones to give homoallylhydroxylamines in excellent yields (eq 88) other Lewis acids were unsuccessful with TiCU as the only exception, although it produced just a 32% yield. [Pg.534]

Nitrones activated by chiral 2,2 -dihydroxy-l,P-bisnaphthol (BINOL)-AlMe complexes undergo enantioselective inverse-electron-demand 1,3-dipolar cycloaddition reactions with electron-rich alkenes to produce exo-diastereoisomers of isoxazolidines. The diastereoselectivity of the 1,3-dipolar cycloaddition between diphenyl nitrone and 4-(5 )-benzyl-( )-but-2 -enoyl)-l,3-oxazolidin-2-one can be controlled by inorganic salts whose cations behave like Lewis acids.The Cu(OTf)2-bisoxazoline-catalysed asymmetric 1,3-dipolar cycloaddition of nitrones with electron-rich alkenes at room temperature gave isoxazolidines in good yields and diastereoselectivity and with high enantioselectivities of up to 94% ee. ° Kinetic studies have shown that the reaction rate of the 1,3-dipolar cycloaddition of C,tV-diphenyl nitrone with dibutyl fumarate increases dramatically in aqueous solutions... [Pg.505]

Huisgen et have studied the kinetics of the reaction of 48 with a variety of olefins. Table 7.3 gives some selected data of the relative reactivities in toluene solution. Of all the olefins examined, MA was the most reactive. Recently, Russian workers have studied the kinetics of the reaction of MA with nitrones.Activity of the nitrone was reported to parallel the exo-thermicity of the reaction. [Pg.225]

A" -Isoxazolines, which are readily accessible by 1,3-dipolar addition of nitrones and nitronic esters to activated alkynes, undergo facile rearrangement upon warming (<110 °C)... [Pg.89]

Application in organic synthesis of optically active isoxazolidones obtained by asymmetric cycloaddition of nitrones with allenes 97T403. [Pg.253]

Scheeren et al. reported the first enantioselective metal-catalyzed 1,3-dipolar cycloaddition reaction of nitrones with alkenes in 1994 [26]. Their approach involved C,N-diphenylnitrone la and ketene acetals 2, in the presence of the amino acid-derived oxazaborolidinones 3 as the catalyst (Scheme 6.8). This type of boron catalyst has been used successfully for asymmetric Diels-Alder reactions [27, 28]. In this reaction the nitrone is activated, according to the inverse electron-demand, for a 1,3-dipolar cycloaddition with the electron-rich alkene. The reaction is thus controlled by the LUMO inone-HOMOaikene interaction. They found that coordination of the nitrone to the boron Lewis acid strongly accelerated the 1,3-dipolar cycloaddition reaction with ketene acetals. The reactions of la with 2a,b, catalyzed by 20 mol% of oxazaborolidinones such as 3a,b were carried out at -78 °C. In some reactions fair enantioselectivities were induced by the catalysts, thus, 4a was obtained with an optical purity of 74% ee, however, in a low yield. The reaction involving 2b gave the C-3, C-4-cis isomer 4b as the only diastereomer of the product with 62% ee. [Pg.218]

The normal electron-demand principle of activation of 1,3-dipolar cycloaddition reactions of nitrones has also been tested for the 1,3-dipolar cycloaddition reaction of alkenes with diazoalkanes [71]. The reaction of ethyl diazoacetate 33 with 19b in the presence of a TiCl2-TADDOLate catalyst 23a afforded the 1,3-dipolar cycloaddition product 34 in good yield and with 30-40% ee (Scheme 6.26). [Pg.231]

A mechanism for this reaction has been proposed [75], The first key intermediate in the reaction is the copper(I) acetylide 42. The additional ligand may be solvent or H2O. The acetylene moiety in 42 is activated for a 1,3-dipolar cycloaddition with the nitrone to give intermediate 43, with introduction of chirality in the product. A possible route to ris/traws-41 might be via intermediate 44. Finally, the cis isomer is isomerized into the thermally more stable trans-41. It should be mentioned that the mechanism outlined in Scheme 6.32 was originally proposed for a racemic version of the reaction to which water was added. [Pg.235]

Dipolar cydoadditions are one of the most useful synthetic methods to make stereochemically defined five-membered heterocydes. Although a variety of dia-stereoselective 1,3-dipolar cydoadditions have been well developed, enantioselec-tive versions are still limited [29]. Nitrones are important 1,3-dipoles that have been the target of catalyzed enantioselective reactions [66]. Three different approaches to catalyzed enantioselective reactions have been taken (1) activation of electron-defident alkenes by a chiral Lewis acid [23-26, 32-34, 67], (2) activation of nitrones in the reaction with ketene acetals [30, 31], and (3) coordination of both nitrones and allylic alcohols on a chiral catalyst [20]. Among these approaches, the dipole/HOMO-controlled reactions of electron-deficient alkenes are especially promising because a variety of combinations between chiral Lewis acids and electron-deficient alkenes have been well investigated in the study of catalyzed enantioselective Diels-Alder reactions. Enantioselectivities in catalyzed nitrone cydoadditions sometimes exceed 90% ee, but the efficiency of catalytic loading remains insufficient. [Pg.268]

Among the J ,J -DBFOX/Ph-transition(II) metal complex catalysts examined in nitrone cydoadditions, the anhydrous J ,J -DBFOX/Ph complex catalyst prepared from Ni(C104)2 or Fe(C104)2 provided equally excellent results. For example, in the presence of 10 mol% of the anhydrous nickel(II) complex catalyst R,R-DBFOX/Ph-Ni(C104)2, which was prepared in-situ from J ,J -DBFOX/Ph ligand, NiBr2, and 2 equimolar amounts of AgC104 in dichloromethane, the reaction of 3-crotonoyl-2-oxazolidinone with N-benzylidenemethylamine N-oxide at room temperature produced the 3,4-trans-isoxazolidine (63% yield) in near perfect endo selectivity (endo/exo=99 l) and enantioselectivity in favor for the 3S,4J ,5S enantiomer (>99% ee for the endo isomer. Scheme 7.21). The copper(II) perchlorate complex showed no catalytic activity, however, whereas the ytterbium(III) triflate complex led to the formation of racemic cycloadducts. [Pg.268]

Nitrones are a rather polarized 1,3-dipoles so that the transition structure of their cydoaddition reactions to alkenes activated by an electron-withdrawing substituent would involve some asynchronous nature with respect to the newly forming bonds, especially so in the Lewis acid-catalyzed reactions. Therefore, the transition structures for the catalyzed nitrone cydoaddition reactions were estimated on the basis of ab-initio calculations using the 3-21G basis set. A model reaction indudes the interaction between CH2=NH(0) and acrolein in the presence or absence of BH3 as an acid catalyst (Scheme 7.30). Both the catalyzed and uncatalyzed reactions have only one transition state in each case, indicating that the reactions are both concerted. However, the synchronous nature between the newly forming 01-C5 and C3-C4 bonds in the transition structure TS-J of the catalyzed reaction is rather different from that in the uncatalyzed reaction TS-K. For example, the bond lengths and bond orders in the uncatalyzed reaction are 1.93 A and 0.37 for the 01-C5 bond and 2.47 A and 0.19 for the C3-C4 bond, while those in... [Pg.276]

One of the problems related to the Lewis acid activation of a,/ -unsaturated carbonyl compounds for the reaction with a nitrone is the competitive coordination of the nitrone and the a,/ -unsaturated carbonyl compound to the Lewis acid [30]. Calculations have shown that coordination of the nitrone to the Lewis acid can be more feasible than a monodentate coordination of a carbonyl compound. However, this problem could be circumvented by the application of alkenes which allow a bidentate coordination to the Lewis acid which is favored over the monodentate coordination. [Pg.322]

The Lewis acid-catalyzed reaction of nitrone 21 with ethyl vinyl ether 22 (Scheme 8.8) was also investigated for BH3 and AlMe3 coordinated to 21 [32]. The presence of BH3 decreases the activation energy for the formation of 23 by 3.1 and 4.5 kcal mol to 9.6 kcal mol for the exoselective reaction and 11.6 kcal-mol for the endo-selective reaction, respectively, while the activation energy for the formation of 24 increases by >1.4 kcal mol , compared to those for the uncatalyzed reaction. The transition-state structure for the BH3-exo-selective 1,3-dipolar cycloaddition reaction of nitrone 21 with ethyl vinyl ether 22 is shown in Fig. 8.19. [Pg.325]

Crozet and co-workers have used Spj l reactions for synthesis of new heterocycles, which are expected to be biologically active fsee iilso Section 7 3, which discusses synthesis of alkenesi For example, 2-chloromethyl-5-nitroimidazole reacts v/ith theanionof 2-nitropropane to give 2-isopropylidene-5-nitroimida2ole It is formed via C-alkyladon of the nitronate ion followed by eliminadon of HNCk fEq 5 33 Other derivadves of nitroimidazoles are idso good substrates for Spj ... [Pg.135]

The ( + )-(/ )-methyl 4-tolyl sulfoxide anion from 1 reacts with nitrones 2 to afford optically active hydroxylamines with very high fi stereoselectivity5. The diastereomeric ratio of the products 3 a, b varies from d.r. 75 25-100 0, the highest being for R = t-Bu. The configuration of the diastereomers 3 a, b has not been determined. [Pg.772]

Due to its broad scope, as well as to its favorable features (commercial availability of the catalyst, use of a "green" oxidant, economy, extremely simple procedure and work-up), this method has been rapidly accepted, as demonstrated by its use by several different research groups, despite its recent disclosure.1617 This procedure employing CH3Re03 and UHP appears to be the method of choice when optically active nitrones are prepared by oxidation of the corresponding amines.14 15 18... [Pg.109]

Continuing his studies on the metallation of tetrahydro-2-benzazepine formamidines, Meyers has now shown that the previously unsuccessful deprotonation of 1-alkyl derivatives can be achieved with sec-butyllithium at -40 °C <96H(42)475>. In this way 1,1-dialkylated derivatives are now accessible. The preparation of 3//-benzazepines by chemical oxidation of 2,5- and 2,3-dihydro-l/f-l-benzazepines has been reported <96T4423>. 3Af-Diazepines are also formed by rearrangement of the 5//-tautomers which had been previously reported to be the products of electrochemical oxidation of 2,5-dihydro-lAf-l-benzazepine <95T9611>. The synthesis and radical trapping activities of a number of benzazepine derived nitrones have been reported <96T6519, 96JBC3097>. [Pg.322]

The condensation of nitro compounds and imines, the so-called aza-Henry or nitro-Mannich reaction, has recently emerged as a powerful tool for the enantioselective synthesis of 1,2-diamines through the intermediate /3-amino nitro compounds. The method is based on the addition of a nitronate ion (a-nitro carbanion), generated from nitroalkanes, to an imine. The addition of a nitronate ion to an imine is thermodynamically disfavored, so that the presence of a protic species or a Lewis acid is required, to activate the imine and/or to quench the adduct. The acidic medium is compatible with the existence of the nitronate anion, as acetic acid and nitromethane have comparable acidities. Moreover, the products are often unstable, either for the reversibility of the addition or for the possible /3-elimination of the nitro group, and the crude products are generally reduced, avoiding purification to give the desired 1,2-diamines. Hence, the nitronate ion is an equivalent of an a-amino carbanion. [Pg.16]

This route has been widely exploited because of the availability of a-amino azomethine compoimds from natural (S)-a-amino acids, through the corresponding a-amino aldehydes, which are configurationally stable provided that the amino function is suitably protected. Moreover, some a-amino acids are available with the R configuration and a number of enzymatic and chemical transformations have been described for the preparation of optically active unnatural a-amino acids. Overall, the route suffers from the additional steps required for protection/deprotection of the amino function and, in the case of hydrazones and nitrones, cleavage of the N - N or N - O bond. [Pg.25]

This bifunctionnal amino-thiourea organocatalyst led to high selectivity because it was activating both the nitrone and the malonate, in its enol form, due to the acidic hydrogen atoms of the thiourea. Thus, the amino-thiourea catalyst promoted the Michael reaction of malonates to various nitroolefins... [Pg.261]

Allylation of acyloyl-imidazoles and pyrazoles61 with allyl halide mediated by indium in aqueous media provides a facile regioselective synthesis of P, y-unsaturated ketones (Scheme 11.1), which has been applied to the synthesis of the monoterpene artemesia ketone. The same product can be obtained by indium-mediated allylation of acyl cyanide (Eq. 11.35).62 Samarium, gallium, and bismuth can be used as a mediator for the allylation of nitrones and hydrazones to give homoallylic hydroxylamine and hydrazides in aqueous media in the presence of Bu4NBr (Scheme 11.2).63 The reaction with gallium and bismuth can be increased dramatically under microwave activation. [Pg.352]


See other pages where Nitrones activities is mentioned: [Pg.223]    [Pg.225]    [Pg.223]    [Pg.225]    [Pg.103]    [Pg.144]    [Pg.205]    [Pg.212]    [Pg.214]    [Pg.214]    [Pg.224]    [Pg.227]    [Pg.230]    [Pg.250]    [Pg.277]    [Pg.285]    [Pg.323]    [Pg.325]    [Pg.737]    [Pg.741]    [Pg.336]    [Pg.24]    [Pg.108]    [Pg.109]    [Pg.20]    [Pg.150]    [Pg.336]    [Pg.298]    [Pg.62]   
See also in sourсe #XX -- [ Pg.277 , Pg.278 ]




SEARCH



Nitrones optically active

© 2024 chempedia.info