Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nitrogen compounds, Intermediate

V. NITROGEN COMPOUNDS INTERMEDIATE BETWEEN NITRO BENZENE AND ANILINE... [Pg.563]

It has been tentatively suggested that one mechanism underlies the Willgerodt reaction and the Kindler modification of it. A labile intermediate is first formed which has a carbon—carbon bond in the side chain. The scheme is indicated below it postulates a series of steps involving the addition of ammonia or amine (R = H or alkyl), elimination of water, re addition and eUmination of ammonia or amine until the unsaturation appears at the end of the chain then an irreversible oxidation between sulphur and the nitrogen compound may occur to produce a thioamide. [Pg.924]

The imides, primaiy and secondary nitro compounds, oximes and sulphon amides of Solubility Group III are weakly acidic nitrogen compounds they cannot be titrated satisfactorily with a standard alkaU nor do they exhibit the reactions characteristic of phenols. The neutral nitrogen compounds of Solubility Group VII include tertiary nitro compounds amides (simple and substituted) derivatives of aldehydes and ketones (hydrazones, semlcarb-azones, ete.) nitriles nitroso, azo, hydrazo and other Intermediate reduction products of aromatic nitro compounds. All the above nitrogen compounds, and also the sulphonamides of Solubility Group VII, respond, with few exceptions, to the same classification reactions (reduction and hydrolysis) and hence will be considered together. [Pg.1074]

The key initiation step in cationic polymerization of alkenes is the formation of a carbocationic intermediate, which can then interact with excess monomer to start propagation. We studied in some detail the initiation of cationic polymerization under superacidic, stable ion conditions. Carbocations also play a key role, as I found not only in the acid-catalyzed polymerization of alkenes but also in the polycondensation of arenes as well as in the ring opening polymerization of cyclic ethers, sulfides, and nitrogen compounds. Superacidic oxidative condensation of alkanes can even be achieved, including that of methane, as can the co-condensation of alkanes and alkenes. [Pg.102]

Indoles are usually constructed from aromatic nitrogen compounds by formation of the pyrrole ring as has been the case for all of the synthetic methods discussed in the preceding chapters. Recently, methods for construction of the carbocyclic ring from pyrrole derivatives have received more attention. Scheme 8.1 illustrates some of the potential disconnections. In paths a and b, the syntheses involve construction of a mono-substituted pyrrole with a substituent at C2 or C3 which is capable of cyclization, usually by electrophilic substitution. Paths c and d involve Diels-Alder reactions of 2- or 3-vinyl-pyrroles. While such reactions lead to tetrahydro or dihydroindoles (the latter from acetylenic dienophiles) the adducts can be readily aromatized. Path e represents a category Iley cyclization based on 2 -I- 4 cycloadditions of pyrrole-2,3-quinodimcthane intermediates. [Pg.79]

Other Phosphorus—Nitrogen Compounds. Of the binary phosphoms—nitrogen compounds, only triphosphoms pentanitride [12136-91 -3] 3 5 been obtained in a pure state. It can be prepared by treatment of P S q with ammonia and subsequent heating of the intermediate... [Pg.377]

Hypochlorous acid reacts very rapidly and quantitatively with a slight excess of free ammonia forming monochloramine, NH2CI, which reacts at a slower rate with additional HOCl forming dichloramine, NHCI2. Trichloramine is formed when three moles of HOCl are added per mole of ammonia between pH 3—4 (100). Hypochlorous acid in the form of chlorine or hypochlorite is used in water treatments to oxidize ammonia by the process of break-point chlorination, which is based on formation of unstable dichloramine. The instabiHty of NHCI2 is caused by presence of HOCl and NCl (101,102). The reaction is most rapid at a pH of about 7.5 (103). Other nitrogen compounds such as urea, creatinine, and amino acids are also oxidized by hypochlorous acid, but at slower rates. Unstable iV-chloro compounds are intermediates in deammination of amino acids (104,105). [Pg.467]

The pyridine family of heteroaromatie nitrogen compounds is reactive toward nueleophilie substitution at the C-2 and C-4 positions. The nitrogen atom serves to aetivate the ring toward nueleophilie attack by stabilizing the addition intermediate. This kind of substitution reaction is especially important in the ehemistiy of pyrimidines. [Pg.592]

Oxidative reactions frequently represent a convenient preparative route to synthetic intermediates and end products This chapter includes oxidations of alkanes and cycloalkanes, alkenes and cycloalkenes, dienes, aromatic fluorocarbons, alcohols, phenols, ethers, aldehydes and ketones, carboxylic acids, nitrogen compounds, and organophosphorus, -sulfur, -selenium, -iodine, and -boron compounds... [Pg.321]

Natural products, synthesis of 829, 835, 837, 840-842, 948, 958 Nitrile oxides, reactions of 807 Nitriles - see also y-Ketonitriles reactions of 277 synthesis of 815 Nitrilimines, reactions of 277 Nitritosulphonium intermediates 206 Nitrogen compounds, as oxidizing agents 970-972... [Pg.1202]

Pyridine and other heterocyclic nitrogen compounds can be aminated with alkali metal amides in a process called the Chichibabin reaction The attack is always in the 2 position unless both such positions are filled, in which case the 4 position is attacked. Substituted alkali metal amides (e.g., RNH and R2N ) have also been used. The mechanism is probably similar to that of 13-15. The existence of intermediate ions such as 15... [Pg.873]

In tracing the evolutionary development of iron ligands it is of interest to examine the machinery employed by organisms which carry out reactions on those substances believed to have been present on the primitive Earth. Specific substrates acted on by this group include, besides ferrous iron itself, hydrogen sulfide, hydrogen gas, methane and reduced nitrogen compounds. Species which perform photosynthesis may be presumed to have the capacity to synthesize protoporphyrin IX since this substance is an intermediate in chlorophyll biosynthesis (43). [Pg.157]

It is now recognized that iminoboranes are not merely unique intermediates but rather are members of an independent class of stable compounds which has its own chemistry such as the aminoboranes, borazines, or other examples of boron-nitrogen compounds. [Pg.40]

Nitrogen compounds are also effective as nucleophiles in the anodic oxidation of silyl-substituted ethers. The electrochemical oxidation in the presence of a carbamate or a sulfonamide in dry THF or dichloromethane results in the selective cleavage of the C-Si bond and the introduction of the nitrogen nucleophile at the carbon (Scheme 21) [55]. Since a-methoxycarbamates are useful intermediates in the synthesis of nitrogen-containing compounds [44], this reaction provides useful access to such compounds. Cyclic silyl-substkuted ethers such as 2-silyltetrahydrofurans are also effective for the introduction of nitrogen nucleophiles. The anodic oxidation in the presence of a carbamate or a... [Pg.73]

As depicted in Scheme 11, ylides 39 derived from 4-methyl-[l,2,3]triazolo[l,5- ]pyridine react with Michael acceptors, which, upon nucleophilic attack at C3 and ring opening, lead to nucleophilic displacement of nitrogen. The intermediate diradical led to a mixture of compounds, including alkenes and a cyclobutane derivative when methyl acrylate was used, and the indolizine 40 with methyl propiolate as the electrophile <1998T9785>. Heating 4-methyl triazolopyridine with benzenesulfonyl chloride in acetone also confirmed decomposition via a radical pathway. [Pg.595]

A particular case for the generation of a y-substimted organolithium compound, derived from an imine, was used for the synthesis of 2-substituted pyrrolidines. DTBB-catalyzed (5%) lithiation of y-chloro imines 196 yielded, after hydrolysis, 2-substituted pyrrolidines 198, including nomicotine (R = H, R = 3-pyridyl). The corresponding y-nitrogenated organolithium intermediate 197 was probably involved (Scheme 68). ... [Pg.683]

Sha et al. (45) reported an intramolecular cycloaddition of an alkyl azide with an enone in an approach to a cephalotaxine analogue (Scheme 9.45). Treatment of the bromide 205 with NaN3 in refluxing methanol enabled the isolation of compounds 213 and 214 in 24 and 63% yields, respectively. The azide intermediate 206 underwent 1,3-dipolar cycloaddition to produce the unstable triazoline 207. On thermolysis of 207 coupled with rearrangement and extrusion of nitrogen, compounds 213 and 214 were formed. The lactam 214 was subsequently converted to the tert-butoxycarbonyl (t-Boc)-protected sprrocyclic amine 215. The exocyclic double bond in compound 215 was cleaved by ozonolysis to give the spirocyclic ketone 216, which was used for the synthesis of the cephalotaxine analogue 217. [Pg.649]

Metal-Nitrogen Compounds The cobalt catalyzed reaction of primary and secondary amines with carbon monoxide leads to the formation of formamide derivatives. Dimethylamine, for example, gives iV,i T-dimethvlformamide in 60% yield (90, 91). Very likely cobalt-nitrogen compounds are intermediates which undergo a CO insertion and then reduction. The following mechanism has been suggested for the reaction (90). [Pg.184]

A-Acyliminium ions are versatile intermediates for synthesis of nitrogenous compounds, particularly alkaloids [154]. The conjugate system is very electrophilic such that it can be intercepted by various donors including carbonyl compounds and jt-systems. In comparison with a,p-unsaturated ketones the replacement of the a-carbon with a nitrogen atom accentuates the reactivity of these species. Ingenious applications of the JV-acyliminium ions include service to synthesis of corydaline [155], lycoramine [156], quebrachamine [157], and ajmaline [158], to name a very few. [Pg.121]


See other pages where Nitrogen compounds, Intermediate is mentioned: [Pg.10]    [Pg.3]    [Pg.1074]    [Pg.441]    [Pg.146]    [Pg.71]    [Pg.316]    [Pg.182]    [Pg.85]    [Pg.432]    [Pg.318]    [Pg.368]    [Pg.551]    [Pg.19]    [Pg.21]    [Pg.49]    [Pg.95]    [Pg.210]    [Pg.318]    [Pg.642]    [Pg.32]    [Pg.94]    [Pg.324]    [Pg.328]    [Pg.371]    [Pg.89]    [Pg.200]    [Pg.126]   
See also in sourсe #XX -- [ Pg.563 ]




SEARCH



Compound intermediates

Intermediate compounds nitrogenated

Intermediate compounds nitrogenated

Nitrogen intermediates

© 2024 chempedia.info