Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nitrile oxide, cycloaddition structure

Intramolecular [3+2] dipolar cycloadditions have also been employed as a post-Ugi transformation to generate heterobicyclic structures, namely fused isoxazolines [130], isoxazoles [130] and triazoles [131] (Fig. 31). Isoxazoles were obtained through intramolecular nitrile oxide cycloaddition. The precursor of the nitrile oxide (a nitro group) was introduced into the carboxylic component, while a triple bond was positioned in the starting amine. Treatment of 152 with POCl3/Et3N gave the intermediate nitrile oxide, which spontaneously cyclized to isoxazoles 153. [Pg.26]

The sesquiterpene skeleton has also been assembled by the intramolecular nitrile oxide cycloaddition sequence. Oxime 238 (obtained from epoxy silyl ether 237), on treatment with sodium hypochlorite gave isoxazoline 239, which was sequentially hydrolyzed and then subjected to the reductive hydrolysis conditions-cyclization sequence to give the furan derivative 240 (330) (Scheme 6.93). In three additional steps, compound 240 was converted to 241. This structure contains the C11-C21 segment of the furanoterpene ent-242, that could be obtained after several more steps (330). [Pg.448]

A reaction in the alternative sense 5.133 is the cycloaddition of a nitrile oxide to a terminal alkene, which gives mainly the diastereoisomer 5.141 by way of the transition structure 5.139. Nitrile oxide cycloadditions are among those dipolar cycloadditions which are electrophilic in nature. The substituent A is a hydrogen atom, and the medium-sized group is only a methyl group, so it fits the criteria that make this pathway plausible. [Pg.179]

Heterocyclic sulphoxides of general structure 185,186 and 187 have been prepared by cycloaddition of diarylsulphines 173b to nitrile oxides 188226, nitrile ylides 189227 and nitrones 190228, respectively (equation 100). [Pg.277]

Cycloadditions of nitrones, nitrile oxides or diazo compounds to thiete dioxides do not show the high stereoselectivity observed with acyclic vinyl sulfones, and mixtures of the two possible adducts are formed . The charge-transfer stabilization energy calculated according to the Klopman-Salem perturbational approach is able to account for the experimental trends of the isomer ratio in terms of the major stereochemical structural differences between the acyclic vinyl sulfones and the four-membered ring sulfones (see Section IV.B.3). [Pg.458]

The product of the reaction in Entry 8 was used in the synthesis of the alkaloid pseudotropine. The proper stereochemical orientation of the hydroxy group is determined by the structure of the oxazoline ring formed in the cycloaddition. Entry 9 portrays the early stages of synthesis of the biologically important molecule biotin. The reaction in Entry 10 was used to establish the carbocyclic skeleton and stereochemistry of a group of toxic indolizidine alkaloids found in dart poisons from frogs. Entry 11 involves generation of a nitrile oxide. Three other stereoisomers are possible. The observed isomer corresponds to approach from the less hindered convex face of the molecule. [Pg.534]

Facial selectivity in 1,3-dipolar cycloadditions to cis-3,4-dimethylcyclobutene (73) (Scheme 1.21) was studied. Only phenylglyoxylo- and pyruvonitrile oxides lacked facial selectivities (anti syn = 1 1). All other nitrile oxides formed preferably anti-74. The anti/syn ratio increased from 60 40 (R = P-O2NC6K4) and 65 35 (R = Ph) to 87 13 and 92 8 for bulky ten-Bu and mesityl substituents, respectively. The transition-state structure of the cycloaddition of formonitrile oxide was determined using both HF/6-31G and B3LYP/6-31G methods. The... [Pg.31]

Fullerenes Cycloaddition reactions are very popular for functionalization of fullerenes. Such reactions of fullerenes are compiled and discussed in detail in Reference 253. During the last 10 to 15 years, several communications appeared concerning [3 + 2] cycloaddition of nitrile oxides to fullerene C60- Nitrile oxides, generated in the presence of C60, form products of 1,3-cycloaddition, fullerene isoxazolines, for example, 89. The products were isolated by gel permeation chromatography and appear by and 13 C NMR spectroscopy to be single isomers. Yields of purified products are ca 30%. On the basis of 13C NMR, structures with Cs symmetry are proposed. These products result from addition of the nitrile oxide across a 6,6 ring fusion (254). [Pg.36]

Similarly, other cycloadducts of nitrile oxides with C6o were synthesized. The cycloadducts were characterized by 13C NMR spectroscopy and high-resolution fast atom bombardment (FAB) mass spectrometry. It should be mentioned that X-ray structure determination of the 3-(9-anthryl)-4,5-dihydroisoxazole derivative of C6o, with CS2 included in the crystals, was achieved at 173 K (255). Cycloaddition of fullerene C60 with the stable 2-(phenylsulfonyl)benzonitrile oxide was also studied (256). Fullerene formed with 2-PhSC>2C6H4CNO 1 1 and 1 2 adducts. The IR, NMR, and mass spectra of the adducts were examined. Di(isopropoxy)phosphorylformonitrile oxide gives mono- and diadducts with C60 (257). Structures of the adducts were studied using a combination of high performance liquid chromatography (HPLC), semiempirical PM3 calculations, and the dipole moments. [Pg.36]

Dipolar cycloaddition of 2,4-(trimethylsilyl)- and 2,4-(trimethylgermyl)-substituted thiophene-1,1-dioxides as well as silylated 2,2 -bithiophene-1,1-dioxides was investigated. It was shown that only the C(4)=C(5) double bond of 2,4-disubstituted thiophene-1,1-dioxides interacts with acetonitrile oxide to give thienoisoxazoline dioxides. Bithiophene derivatives were inactive or their reaction with nitrile oxide was accompanied by desilylation. Cycloaddition of benzonitrile oxide with all mentioned sulfones did not occur. The molecular structure of 3a-methyl-5.6a-bis(trimethylgermyl)-3a,6a-dihydrothieno 2.3-c/ isoxazole 4,4-dioxide was established by X-ray diffraction (263). ... [Pg.38]

Cycloaddition reactions of nitrile oxides with 5-unsubstituted 1,4-dihydro-pyridine derivatives produced isoxazolo[5,4-Z>]pyridines in moderate to good yield. In each case examined, the reaction produced only a single isomer, the structure of which was assigned by NMR spectra and confirmed by X-ray diffraction analysis of 102 (270). A study of the cycloaddition behavior of substituted pyridazin-3-ones with aromatic nitrile oxides was carried out (271). Nitrile oxides undergo position and regioselective 1,3-dipolar cycloaddition to the 4,5-double bond of pyridazinone to afford 3a,7a-diliydroisoxazolo 4,5-<7]pyridazin-4-ones, for example, 103. [Pg.40]

Benzonitrile oxide, generated by dehydrochlorination of benzohydroximoyl chloride, undergoes regio- and face-selective cycloadditions to 6,8-dioxabicyclo [3.2.1]oct-3-ene 108a yielding a 4 1 mixture of 4,5-dihydroisoxazoles 109 and 110. Both products have exo-stereochemistry, resulting from the approach of the nitrile oxide from the face opposite to the the methyleneoxy bridge. Structures of the adducts were determined by 1 H NMR spectroscopy and, in the case of compound 109, by X-ray diffraction analysis (275). [Pg.41]

I.3.4.2. Intermolecular Cycloaddition at C=X or X=Y Bonds Cycloaddition reactions of nitrile oxides to double bonds containing heteroatoms are well documented. In particular, there are several reviews concerning problems both of general (289) and individual aspects. They cover reactions of nitrile oxides with cumulene structures (290), stereo- and regiocontrol of 1,3-dipolar cycloadditions of imines and nitrile oxides by metal ions (291), cycloaddition reactions of o-benzoquinones (292, 293) and aromatic seleno aldehydes as dipolarophiles in reactions with nitrile oxides (294). [Pg.45]


See other pages where Nitrile oxide, cycloaddition structure is mentioned: [Pg.21]    [Pg.363]    [Pg.391]    [Pg.461]    [Pg.784]    [Pg.287]    [Pg.315]    [Pg.385]    [Pg.631]    [Pg.181]    [Pg.242]    [Pg.264]    [Pg.89]    [Pg.534]    [Pg.458]    [Pg.26]    [Pg.35]    [Pg.44]    [Pg.46]    [Pg.51]    [Pg.56]    [Pg.57]    [Pg.59]   
See also in sourсe #XX -- [ Pg.901 ]




SEARCH



Cycloaddition oxide

Cycloadditions oxidative

Nitrile oxide cycloaddition

Nitrile oxides

Nitrile oxides cycloadditions

Nitriles cycloaddition

Nitriles cycloadditions

Nitriles nitrile oxides

Oxidative cycloaddition

Oxidative nitriles

Oxides, structure

© 2024 chempedia.info