Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkenes nitrenes

As another example of nitrene formation, the reaction of o-nitrostilbene (96) with CO in the presence of SnCU affords 2-phenylindole (97). The reaction is explained by nitrene formation by deoxygenation of the nitro group with CO, followed by the addition of the nitrene to alkene. Similarly, the 2//-indazole derivative 99 was prepared by reductive cyclization of the A-(2-nitrobenzyli-dene)amine 98[89]. [Pg.539]

Electrophilic nitrogen compounds, such as arenesulfonyloxyamines, can convert alkenes to aziridines without the intervention of free nitrenes (80CC560). [Pg.36]

Aziridines have been prepared stereospecifically by the nucleophilic addition of the nitrogen residue to alkenes <80T73). Introduction of the nitrene is accomplished readily via a Michael-type addition with free diphenylsulfilimine (Scheme 12), and where a chiral sulfilimine is used the chirality is transferred to the aziridine with optical yields in excess of 25%. [Pg.87]

Those reactions that have found general use for the preparation of aziridines can be grouped into two broad classes addition and cyclization processes, and each of these categories can be further divided. Addition processes can be classified as being C2+N1 reactions (addition of nitrenes, or nitrene equivalents [ nitrenoids ], to alkenes Scheme 4.1) or (J N1+C1 reactions (addition of carbenes or carbenoids to imines Scheme 4.2). [Pg.117]

C2+N1 reactions addition of nitrenes, or nitrenoids, to alkenes Scheme 4.1... [Pg.117]

The carbene-imine route to aziridines has attracted increasing attention of late, though there have also been notable recent advances in addition processes involving alkenes and nitrene equivalents. [Pg.118]

There are two general methods within this subcategory, involving one- or two-step mechanisms. Nitrenes and metalonitrenes thus add to alkenes by a direct azir-idination reaction, whereas nonmetallic nitrenoids usually react through an addition-elimination process (Scheme 4.6). [Pg.119]

Notwithstanding the drawbacks to the method, the addition of nitrenes to alkenes is a well studied classical method for direct aziridination. The original reactions (often involving alkoxycarbonylnitrenes) employed harsh conditions, resulting in nonstereoselective transformations. In these pioneering reports, the requi-... [Pg.119]

When unacylated azides are used as nitrene precursors, the first reaction with an alkene is a cydoaddition, generating the corresponding 1,2,3-triazoline, which often eliminates N2 under the fierce reaction conditions to give an aziridine product (Scheme 4.9 ). [Pg.120]

In many instances, however, the intermediate triazoline can be isolated and separately converted into the aziridine, often with poor stereoselectivity. The first practical modification to the original reaction conditions generated the (presumed) nitrenes by in situ oxidation of hydrazine derivatives. Thus, Atkinson and Rees prepared a range of N-amino aziridine derivatives by treatment of N-aminophthali-mides (and other N-aminoheterocydes) with alkenes in the presence of lead tetraacetate (Scheme 4.10) [7]. [Pg.121]

Since the mid-1990s, synthetic attention has been directed more towards the use of metal-stabilized nitrenes as synthetic effectors of alkene aziridination. In 1969 it was reported that Cu(i) salts were capable of mediating alkene aziridination when treated with tosyl azide, but the method was limited in scope and was not adopted as a general method for the synthesis of aziridines [12]. Metaloporphyrins [13] were shown to be catalysts for the aziridination of alkenes in the presence of the nitrene precursor N-tosyliminophenyliodinane [14] in the early 1980s, but the reaction did... [Pg.122]

Chloramine-T also functions as a nitrene source in the presence of heteropoly acids (HPAs) such as phosphomolybdic and phosphotungstic acids. The aziridination of alkenes by treatment with the combination of HPA and chloramine-T is... [Pg.125]

Bromamine-T can also be utilized as a nitrene source, as reported by Zhang et al. [27]. Fe(in) porphyrins such as Fe(TPPC)Cl (Figure 4.2) thus catalyze the aziridination of alkenes when bromamine-T is used, whereas chloramine-T was inactive and iodinanes were inefficient reagents. [Pg.126]

Another conceptually unique approach in alkene aziridination has come from Johnston s labs. These workers shrewdly identified organic azides as nitrene equivalents when these compounds are in the amide anion/diazonium resonance form. Thus, when a range of azides were treated with triflic acid and methyl vinyl ketone at 0 °C, the corresponding aziridines were obtained, in synthetically useful yields. In the absence of the Bronsted acid catalyst, cycloaddition is observed, producing triazolines. The method may also be adapted, through the use of unsaturated imi-des as substrates, to give anti-aminooxazolidinones (Scheme 4.25) [32]. [Pg.129]

The synthesis of aziridines through reactions between nitrenes or nitrenoids and alkenes involves the simultaneous (though often asynchronous vide supra) formation of two new C-N bonds. The most obvious other alternative synthetic analysis would be simultaneous formation of one C-N bond and one C-C bond (Scheme 4.26). Thus, reactions between carbenes or carbene equivalents and imines comprise an increasingly useful method for aziridination. In addition to carbenes and carbenoids, ylides have also been used to effect aziridinations of imines in all classes of this reaction type the mechanism frequently involves a stepwise, addition-elimination process, rather than a synchronous bond-forming event. [Pg.129]

Aziridines are versatile intermediates in organic synthesis and commonly found in bioactive molecules. The transition metal-catalyzed nitrene transfer to alkenes is an attractive method for the synthesis of aziridines [7]. In 1984, Mansuy and coworkers reported the first example of an iron-catalyzed alkene aziridination in which iron porphyrin [Fe(TTP)Cl] was used as catalyst and PhINTs was used as nitrene source [30]. Subsequently, the same authors demonstrated that [Fe(TDCPP) (CIO4)] is a more efficient and selective catalyst than [Fe(TTP)Cl] (Scheme 20). [Pg.129]

A more practical, atom-economic and environmentally benign aziridination protocol is the use of chloramine-T or bromamine-T as nitrene source, which leads to NaCl or NaBr as the sole reaction by-product. In 2001, Gross reported an iron corrole catalyzed aziridination of styrenes with chloramine-T [83]. With iron corrole as catalyst, the aziridination can be performed rmder air atmosphere conditions, affording aziridines in moderate product yields (48-60%). In 2004, Zhang described an aziridination with bromamine-T as nitrene source and [Fe(TTP)Cl] as catalyst [84]. This catalytic system is effective for a variety of alkenes, including aromatic, aliphatic, cyclic, and acyclic alkenes, as well as cx,p-unsaturated esters (Scheme 28). Moderate to low stereoselectivities for 1,2-disubstituted alkenes were observed indicating the involvement of radical intermediate. [Pg.133]

Aziridines are important compounds due to their versatility as synthetic intermediates. In addition, aziridine rings are present in innumerable natural products and biologically active compounds. Nitrene addition to alkenes is one of the most well established methods for the synthesis of aziridines. Photolysis or thermolysis of azides are good ways to generate nitrenes. Nitrenes can also be prepared in situ from iodosobenzene diacetate and sulfonamides or the ethoxycarbonylnitrene from the A-sulfonyloxy precursor. [Pg.151]

Nitrene addition to alkenes can be aided by the nse of a transition metal, such as copper, rhodium, ruthenium, iron, cobalt, etc. NHC-Cu catalysts have been used in nitrene addition. For example [Cu(DBM)(IPr)] 147 (DBM = dibenzoyl-methane) was successfully employed in the aziridination of aliphatic alkenes 144 in presence of trichloroethylsulfamate ester 145 and iodosobenzene 146 (Scheme 5.38) [43]. [Pg.151]

Copper(I) complexes containing NHC-phenoxyimine 153 or NHC-phenoxyamine 154 were shown to be good catalyst systems for nitrene addition to alkenes 144 (Scheme 5.40) [45]. The catalyst systems showed to be highly efficient as only 1 mol% catalyst loading was required to afford aziridines 155 in moderate to good yields. [Pg.152]

Scheme 5.40 Nitrene addition to alkenes catalysed by NHC-Cu complex... Scheme 5.40 Nitrene addition to alkenes catalysed by NHC-Cu complex...
Intermolecular addition of photochemically generated nitrenes and in particular acylnitrenes to alkenes provides a useful and widely applied route to aziridines.385 An analogous intramolecular photoreaction is thought to be involved in the conversion of the o-azidophenylethylfuran 461 into the pyrrolo[l,2-a]quinoline 462 as outlined in Scheme 13,386 and intramolecular addition to an azo group has been observed in the 8-azido-1-arylazonaphthalenes 463.387... [Pg.315]

The first catalytic, asymmetric aziridination of an alkene in good yield and high enantioselectivity was recently reported56. Thus styrene (63) was treated with [N-(p-toluenesulphonyl)imino]phenyliodinane (64) and an asymmetric copper catalyst to yield (/ )-Ar-(p-toluenesulphonyl)-2-phenylaziridine [(/ )-65] in 97% yield with an ee of 61%, the catalyst being the complex formed in situ in chloroform from the chiral bis[(5 ) 4-ferf-butyloxazoline] [(S,S)-66] and copper triflate (CuOTf)56, the reaction proceeding by way of a nitrene transfer57. [Pg.119]


See other pages where Alkenes nitrenes is mentioned: [Pg.90]    [Pg.90]    [Pg.36]    [Pg.37]    [Pg.86]    [Pg.86]    [Pg.176]    [Pg.150]    [Pg.201]    [Pg.119]    [Pg.120]    [Pg.121]    [Pg.478]    [Pg.41]    [Pg.132]    [Pg.136]    [Pg.453]    [Pg.137]    [Pg.251]    [Pg.197]    [Pg.255]   
See also in sourсe #XX -- [ Pg.228 , Pg.229 ]

See also in sourсe #XX -- [ Pg.228 , Pg.229 ]

See also in sourсe #XX -- [ Pg.228 , Pg.229 ]

See also in sourсe #XX -- [ Pg.95 , Pg.96 , Pg.97 , Pg.134 , Pg.222 , Pg.228 , Pg.229 ]




SEARCH



Addition of Nitrenes and Nitrenoids to Alkenes

Nitrene

Nitrenes

Nitrenes addition to alkenes

Nitrenes alkenic

Nitrenes via alkenes

© 2024 chempedia.info