Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nickel enantioselective catalysts

Other metals can also be used as a catalytic species. For example, Feringa and coworkers <96TET3521> have reported on the epoxidation of unfunctionalized alkenes using dinuclear nickel(II) catalysts (i.e., 16). These slightly distorted square planar complexes show activity in biphasic systems with either sodium hypochlorite or t-butyl hydroperoxide as a terminal oxidant. No enantioselectivity is observed under these conditions, supporting the idea that radical processes are operative. In the case of hypochlorite, Feringa proposed the intermediacy of hypochlorite radical as the active species, which is generated in a catalytic cycle (Scheme 1). [Pg.45]

A further example of a reaction which may be optimised in IL/scC02 by selection of the appropriate anion for the IL is catalytic enantioselective hydrovinylation, a synthetically interesting and truly atom economic C-C bond forming reaction [77-79]. The nickel complex below has been developed by Wilke and co-workers as precursor for a highly active and enantioselective catalyst for this process. [Pg.227]

Chiral amines were always considered important targets for synthetic chemists, and attempts to prepare such compounds enantioselectively date back to quite early times. Selected milestones for the development of enantioselective catalysts for the reduction of C = N functions are listed in Table 34.1. At first, only heterogeneous hydrogenation catalysts such as Pt black, Pd/C or Raney nickel were applied. These were modified with chiral auxiliaries in the hope that some induction - that is, transfer of chirality from the auxiliary to the reactant -might occur. These efforts were undertaken on a purely empirical basis, without any understanding of what might influence the desired selectivity. Only very few substrate types were studied and, not surprisingly, enantioselectivities were... [Pg.1193]

Scheme 1 a The [2 + 2] cycloaddition product of prochiral trans 2-butene with Si dimers of the Si(100) surface leads to chiral adsorbate complexes, b Hydrogenation of prochiral a-keto esters over platinum is a heterogeneously catalyzed reaction leading to chiral alcohols. Using cinchonidin as chiral modifier makes this surface reaction enantioselective. In a similar fashion, TA-modified nickel is a highly enantioselective catalyst for /3-keto ester hydrogenation... [Pg.223]

Schwab et al. (46, 47) showed that nickel, copper and platinum supported on optically-active quartz behave as enantioselective catalysts for the dehydrogenation and oxidation of racemic sec-butyl alcohol. At low conversion, a measurable optical rotation of the reaction solution is observed, showing that one enantiomer has reacted... [Pg.219]

Catalytic Enantioselective Conjugate Addition of Dialkylzincs to Enones. A chiral nickel complex modified with DBNE and an achiral ligand such as 2,2 -bipyridyl in acetonitrile/toluene is an highly enantioselective catalyst for the addition of dialkylzincs to enones. p-Substituted ketones with up to 90% ee are obtained (eq 23). The method is the first highly enantioselective catalytic conjugate addition of an oiganometallic reagent to an enone. [Pg.418]

Keane MA, Webb G (1992) The enantioselective hydrogenation of methyl acetoacetate over supported nickel catalysts I. The modification procedure. 1 Catal 136 1 Keane MA (1997) Interaction of optically active tartaric acid with a nickel-sUica catalyst role of both the modification and reaction in determining enantioselectivity. Langmuir 13 41... [Pg.116]

Table 4.7. Rate of formation of (R)-(-)-MHB (mmol h g ) and ee values in the enantioselective hydrogenation of methyl acetoacetate on deposited nickel-kieselguhr catalysts, promoted with 1% noble metals and modified with (2R,3R)-tartaric acid (according to summarized data of Orito et al. ). Table 4.7. Rate of formation of (R)-(-)-MHB (mmol h g ) and ee values in the enantioselective hydrogenation of methyl acetoacetate on deposited nickel-kieselguhr catalysts, promoted with 1% noble metals and modified with (2R,3R)-tartaric acid (according to summarized data of Orito et al. ).
Similar isomerisation reactions have been apphed to other substrates with very high enantioselectivities for many trisubstituted allylic amines. In general, the rearrangement of allylic alcoholsand ethers provides lower enantioselectivity. However, higher ees have been obtained in the isomerisation of cyclic acetals and the desymmetrisation of 4,7-dihydro-1,3-dioxepins such as (12.06) occurs with up to 92% ee in the presence of the nickel-DUPHOS catalyst (12.07). Unfunction-alised alkenes have been isomerised enantioselectively using a titanocene catalyst. ... [Pg.333]

Similar to the results discussed for the silylcarbocyclizations of carbon-carbon multiple bonds, reductive cyclizations in the presence of carbonyl compounds are readily achieved. Crowe has developed a titanium-catalyzed procedure for the intramolecular reductive coupling of i5, -unsaturated carbonyl compounds in the presence of triethoxysilane (eq 18).The electronic advantage of triethoxysilane is demonstrated by the lack of reductive coupling in the presence of less reactive silanes, such as triethylsilane and diphenylsilane. With this method, Mori has utilized nickel(O) catalysts to generate five- and six-membered carbocycles and pyrrolidine derivatives. Furthermore, coordination of a chiral phosphine ligand to the nickel catalyst renders the reaction moderately enantioselective. ... [Pg.503]

Among the J ,J -DBFOX/Ph-transition(II) metal complex catalysts examined in nitrone cydoadditions, the anhydrous J ,J -DBFOX/Ph complex catalyst prepared from Ni(C104)2 or Fe(C104)2 provided equally excellent results. For example, in the presence of 10 mol% of the anhydrous nickel(II) complex catalyst R,R-DBFOX/Ph-Ni(C104)2, which was prepared in-situ from J ,J -DBFOX/Ph ligand, NiBr2, and 2 equimolar amounts of AgC104 in dichloromethane, the reaction of 3-crotonoyl-2-oxazolidinone with N-benzylidenemethylamine N-oxide at room temperature produced the 3,4-trans-isoxazolidine (63% yield) in near perfect endo selectivity (endo/exo=99 l) and enantioselectivity in favor for the 3S,4J ,5S enantiomer (>99% ee for the endo isomer. Scheme 7.21). The copper(II) perchlorate complex showed no catalytic activity, however, whereas the ytterbium(III) triflate complex led to the formation of racemic cycloadducts. [Pg.268]

Enantioselectivities were found to change sharply depending upon the reaction conditions including catalyst structure, reaction temperature, solvent, and additives. Some representative examples of such selectivity dependence are listed in Scheme 7.42. The thiol adduct was formed with 79% ee (81% yield) when the reaction was catalyzed by the J ,J -DBFOX/Ph aqua nickel(II) complex at room temperature in dichloromethane. Reactions using either the anhydrous complex or the aqua complex with MS 4 A gave a racemic adduct, however, indicating that the aqua complex should be more favored than the anhydrous complex in thiol conjugate additions. Slow addition of thiophenol to the dichloromethane solution of 3-crotonoyl-2-oxazolidinone was ineffective for enantioselectivity. Enantioselectivity was dramatically lowered and reversed to -17% ee in the reaction at -78 °C. A similar tendency was observed in the reactions in diethyl ether and THF. For example, a satisfactory enantioselectivity (80% ee) was observed in the reaction in THF at room temperature, while the selectivity almost disappeared (7% ee) at 0°C. [Pg.286]

We employed malononitrile and l-crotonoyl-3,5-dimethylpyrazole as donor and acceptor molecules, respectively. We have found that this reaction at room temperature in chloroform can be effectively catalyzed by the J ,J -DBFOX/Ph-nick-el(II) and -zinc(II) complexes in the absence of Lewis bases leading to l-(4,4-dicya-no-3-methylbutanoyl)-3,5-dimethylpyrazole in a good chemical yield and enantio-selectivity (Scheme 7.47). However, copper(II), iron(II), and titanium complexes were not effective at all, either the catalytic activity or the enantioselectivity being not sufficient. With the J ,J -DBFOX/Ph-nickel(II) aqua complex in hand as the most reactive catalyst, we then investigated the double activation method by using this catalyst. [Pg.291]

As shown above, it was not so easy to optimize the Michael addition reactions of l-crotonoyl-3,5-dimethylpyrazole in the presence of the l ,J -DBFOX/ Ph-Ni(C104)2 3H20 catalyst because a simple tendency of influence to enantio-selectivity is lacking. Therefore, we changed the acceptor to 3-crotonoyl-2-oxazolidi-none in the reactions of malononitrile in dichloromethane in the presence of the nickel(II) aqua complex (10 mol%) (Scheme 7.49). For the Michael additions using the oxazolidinone acceptor, dichloromethane was better solvent than THF and the enantioselectivities were rather independent upon the reaction temperatures and Lewis base catalysts. Chemical yields were also satisfactory. [Pg.293]

Combination of nickel bromide (or nickel acetylacetonate) and A. A -dibutylnorephcdrinc catalyzed the enantioselective conjugate addition of dialkylzincs to a./Tunsaturated ketones to afford optically active //-substituted ketones in up to ca. 50% ee53. Use of the nickel(II) bipyridyl-chiral ligand complex in acetonitrile/toluenc as an in situ prepared catalyst system afforded the //-substituted ketones 2, from aryl-substituted enones 1, in up to 90% ee54. [Pg.910]

The reductive amination of ketones can be carried out under hydrogen pressure in the presence of palladium catalysts. However, if enantiopure Q -aminoketones are used, partial racemization of the intermediate a-amino imine can occur, owing to the equilibration with the corresponding enam-ine [102]. Asymmetric hydrogenation of racemic 2-amidocyclohexanones 218 with Raney nickel in ethanol gave a mixture of cis and trans 1,2-diamino cyclohexane derivatives 219 in unequal amounts, presumably because the enamines are intermediates, but with excellent enantioselectivity. The two diastereomers were easily separated and converted to the mono-protected cis- and trans- 1,2-diaminocyclohexanes 220. The receptor 221 has been also synthesized by this route [103] (Scheme 33). [Pg.39]

Among the various strategies [34] used for designing enantioselective heterogeneous catalysts, the modification of metal surfaces by chiral auxiliaries (modifiers) is an attractive concept. However, only two efficient and technically relevant enantioselective processes based on this principle have been reported so far the hydrogenation of functionalized p-ketoesters and 2-alkanons with nickel catalysts modified by tartaric acid [35], and the hydrogenation of a-ketoesters on platinum using cinchona alk oids [36] as chiral modifiers (scheme 1). [Pg.55]


See other pages where Nickel enantioselective catalysts is mentioned: [Pg.502]    [Pg.809]    [Pg.150]    [Pg.251]    [Pg.1261]    [Pg.674]    [Pg.313]    [Pg.72]    [Pg.99]    [Pg.178]    [Pg.282]    [Pg.134]    [Pg.307]    [Pg.37]    [Pg.41]    [Pg.96]    [Pg.282]    [Pg.311]    [Pg.307]    [Pg.101]    [Pg.34]    [Pg.232]    [Pg.254]    [Pg.261]    [Pg.277]    [Pg.281]    [Pg.282]    [Pg.286]    [Pg.17]    [Pg.431]    [Pg.288]    [Pg.243]    [Pg.298]    [Pg.342]   
See also in sourсe #XX -- [ Pg.339 ]




SEARCH



Enantioselective catalysts

Enantioselectivity catalysts

© 2024 chempedia.info