Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nickel complexes cyclization

Cyclization with various nickel complex catalysts gives up to 97% selectivity to a mixture of cyclooctatetraene derivatives, with only 3% of benzene derivatives. The principal isomer is the symmetrical l,3,5,7-cyclooctatetraene-l,3,5,7-tetramethanol (29). [Pg.104]

Upon treatment with suitable cobalt complexes, methylbutynol cyclizes to a 1,2,4-substituted benzene. Nickel complexes give the 1,3,5-isomer (196), sometimes accompanied by linear polymer (25) or a mixture of tetrasubstituted cyclooctatetraenes (26). [Pg.113]

A cyclization reaction involving a half-formed bridge in which alkyl halide functions interact with (initially) coordinated oxygen atoms is illustrated by [2.9] (Kluiber Sasso, 1970). The X-ray structure of the red paramagnetic nickel complex (65) indicates that the macrocycle coordi-... [Pg.31]

Other template cyclizations. In another Schiff-base template reaction, 1,3-diaminopropane monohydrochloride was reacted with biacetyl in methanol in the presence of Ni(n) to yield the nickel complex of the corresponding cyclic tetraimine - see [2.16] (Jackels et al., 1972). The success of the procedure illustrated is quite dependent on the reaction conditions employed. Attempts to isolate the metal-free macrocycle were unsuccessful - this once again emphasizes the stabilizing role of the metal... [Pg.36]

Among transition metal complexes used as catalysts for reactions of the above-mentioned types b and c, the most versatile are nickel complexes. The characteristic reactions of butadiene catalyzed by nickel complexes are cyclizations. Formations of 1,5-cyclooctadiene (COD) (1) and 1,5,9-cyclododecatriene (CDT) (2) are typical reactions (2-9). In addition, other cyclic compounds (3-6) shown below are formed by nickel catalysts. Considerable selectivity to form one of these cyclic oligomers as a main product by modification of the catalytic species with different phosphine or phosphite as ligands has been observed (3, 4). [Pg.142]

Mechanistic studies of the nickel-catalyzed cyclization of butadiene have been carried out. The formation of various cyclic compounds catalyzed by nickel complexes is explained via the intermediacy of ir-allylic nickel complexes 11 and 12. [Pg.143]

Similar studies on the reactions of butadiene and bis(ir-allyl)palladium were carried out by Wilke and co-workers (4). Unlike the reactions with nickel complexes, no cyclization took place, and 1,6,10-dodecatriene... [Pg.143]

Recently, four-component coupling reactions of aldehydes, alkynes, dienes, and dimethylzinc catalyzed by a nickel complex have been reported (Equation (78)).435 Similarly, l,c< -dienynes react with carbonyl compounds and dimethylzinc in the presence of an Ni catalyst to afford the corresponding cyclized products. [Pg.460]

Fhe electrochemical generation of alkyl radicals catalysed by square planar nickel complexes has been used to achieve radical-alkene addition reactions. Complex 64 was the catalyst of choice. Intramolecular cyclizations to give five raem-... [Pg.142]

Finally, a few cyclizations of unsaturated side chains on o-halogeno-anilines or -benzenes have been catalyzed by transition metal complexes. Cyclization of the cinnamylbenzylamine (245) by palladium gives some 4-benzylisoquinoline and some of compound (246) (77TL1037). Acryloylanilines (247) and (248) can be cyclized by a nickel complex (75MI20800) or by a palladium complex (79JA5281). The mechanism for the latter reaction is given in equation (50). [Pg.433]

Tamao and Ito proposed a mechanism for the nickel-catalyzed cyclization/hydrosilylation of 1,7-diynes initiated by oxidative addition of the silane to an Ni(0) species to form an Ni(ii) silyl hydride complex. Gomplexation of the diyne could then form the nickel(ii) diyne complex la (Scheme 1). Silylmetallation of the less-substituted G=C bond of la, followed by intramolecular / -migratory insertion of the coordinated G=G bond into the Ni-G bond of alkenyl alkyne intermediate Ila, could form dienylnickel hydride intermediate Ilia. Sequential G-H reductive elimination and Si-H oxidative addition would release the silylated dialkylidene cyclohexane and regenerate the silylnickel hydride catalyst (Scheme 1). [Pg.369]

Mori has reported the nickel-catalyzed cyclization/hydrosilylation of dienals to form protected alkenylcycloalk-anols." For example, reaction of 4-benzyloxymethyl-5,7-octadienal 48a and triethylsilane catalyzed by a 1 2 mixture of Ni(GOD)2 and PPhs in toluene at room temperature gave the silyloxycyclopentane 49a in 70% yield with exclusive formation of the m,//7 //i -diastereomer (Scheme 14). In a similar manner, the 6,8-nonadienal 48b underwent nickel-catalyzed reaction to form silyloxycyclohexane 49b in 71% yield with exclusive formation of the // /i ,// /i -diastereomer, and the 7,9-decadienal 48c underwent reaction to form silyloxycycloheptane 49c in 66% yield with undetermined stereochemistry (Scheme 14). On the basis of related stoichiometric experiments, Mori proposed a mechanism for the nickel-catalyzed cyclization/hydrosilylation of dienals involving initial insertion of the diene moiety into the Ni-H bond of a silylnickel hydride complex to form the (7r-allyl)nickel silyl complex li (Scheme 15). Intramolecular carbometallation followed by O-Si reductive elimination and H-Si oxidative addition would release the silyloxycycloalkane with regeneration of the active silylnickel hydride catalyst. [Pg.388]

The benzoylhydrazone of benzaldehyde (57) is oxidatively cyclized at the nickel hydroxide electrode (0.1 M NaOH, 30% t-butanol 70 % water) to the oxadiazole 58, however in only moderate yield (22%). Main product is benzoic acid (59) (60%) additionally a nickel complex (14%) with the probable structure 60 is found (Eq. (17)) . With nickel peroxide in chloroform 30% 58 and 47% 60 are obtained... [Pg.122]

The chemistry outlined in Scheme 24 was then put into effect catalytic hydrogenation of the tris-isoxazole (302) and recyclization with triethylamine gave a tricyclic ligand which was chelated with nickel ions to give (303). Introduction of the fourth nitrogen atom was accomplished by treatment of (303) with ammonium acetate, giving (304). Treatment with cyanide removed the nickel ion which was then replaced with zinc(II) to give (305). The reasons for this transmetallation step were two-fold firstly, zinc(II) corrins, as shown by Eschenmoser, can be readily demetallated, and this fact opens up many options later in the synthesis, but secondly, and more importantly, Eschenmoser s photochemical cyclization of seco-corrins (see Section 3.07.3.4.2.3) does not proceed with nickel complexes of seco-corrins, whereas zinc(II) seco-corrins can be cyclized in almost quantitative yield... [Pg.426]

The secocorrin nickel complex (101) can also be induced to undergo an electrochemical cyclization to corrin (100) but only in low yield. The experimental conditions involve a one-electron oxidation, followed by a one-electron reduction.269 The same secocorrin complex (101) is the starting material for two cyclization sequences leading to a didehydrocorrin complex (107) with a chromophore of seven double bonds (Scheme 67).269,270 The most interesting feature of these sequences is the remarkably easy acid-catalyzed ring closure of the secocorrinoid complex (106) to corrin (107). [Pg.201]

Di(carbene)gold(I) salts, oxidation, 2, 293—294 Dicarbido clusters, with decarutheniums, 6, 1036 Dicarbollide amides, with tantalum, 5, 184 Dicarbollide thorium complexes, synthesis and characterization, 4, 224—225 Dicarbollyl ligands, in nickel complexes, 8, 185 Dicarbonyl complexes arylation with lead triacetates diastereoselectivity, 9, 389 enantioselectivity, 9, 391 mechanisms, 9, 387 reaction examples, 9, 382 indium-mediated allylation, 9, 675 with iridium, 7, 287 reductive cyclization, 10, 529 in Ru and Os half-sandwiches, 6, 508 with Zr—Hf(II), 4, 700... [Pg.94]

Related complexes of group 10 metals are accessible by an oxidative addition/reductive cyclization protocol, exploiting the inverse electron demand (Scheme 27) (Pt <2005JA13494>, Ni <20030M3604>). The nickel complex is thermally unstable, proceeding to perylene via a bimolecular reductive elimination or, in the presence of alkynes, delivering acenaphthylene derivatives by an insertion/reductive elimination pathway. [Pg.592]

Ni(0) catalyst. A radical 5-exo cyclization to the potentially zinc or nickel-complexed ketone provides an alkoxyl radical that combines with the co-produced Ni(I) species. A transmetalation to a zinc alkoxide regenerates the catalyst and forms the zinc cyclopentoxide, from which products 79 are liberated on hydrolysis. A bimetallic Cu(I)-Mn(II) system provided similar results (see Sect. 8.4). Analogous samarium diiodide-mediated reactions require in contrast stoichiometric amounts of the reducing agent and are less diastereoselective [26, 27],... [Pg.349]

Cyclization of 1,6-enynes3 (cf. 13, 91 14, 299). Cyclization of these enynes catalyzed by palladium or nickel complexes generally leads to five-membered ring products. However, cyclization catalyzed by Wilkinson s catalyst generally leads to methylene-2-cyclohexenes. Substitution on either of the terminal groups suppresses this cyclization, which probably involves insertion of Rh(I) in the C—H bond of the terminal alkyne. [Pg.91]

Kurosawa and co-workers have been studying the oxidative cyclization of 7 77 -2-allylbenzophenone nickel complexes leading to the formation of nickelhydrofurans (Equation 35) <2004JA11802, 2006JA7077>. [Pg.1260]


See other pages where Nickel complexes cyclization is mentioned: [Pg.172]    [Pg.488]    [Pg.142]    [Pg.368]    [Pg.125]    [Pg.429]    [Pg.429]    [Pg.429]    [Pg.502]    [Pg.155]    [Pg.82]    [Pg.272]    [Pg.343]    [Pg.354]    [Pg.355]    [Pg.356]    [Pg.90]    [Pg.1011]    [Pg.429]    [Pg.429]    [Pg.429]    [Pg.2911]    [Pg.593]    [Pg.1260]    [Pg.1311]   
See also in sourсe #XX -- [ Pg.175 , Pg.188 ]




SEARCH



Cyclizations complex

Nickel-complex-catalyzed reactions cyclization

© 2024 chempedia.info