Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nickel catalyst hydrogen adsorption

Fig. 11. Changes in specific magnetization of a supported nickel catalyst during adsorption and desorption of hydrogen at room temperature. [Selwood, P. W., J. Am. Chem. Soc. 78. 3893 (1956).]... Fig. 11. Changes in specific magnetization of a supported nickel catalyst during adsorption and desorption of hydrogen at room temperature. [Selwood, P. W., J. Am. Chem. Soc. 78. 3893 (1956).]...
Evidence for a marked difference between the surface and bulk compositions of dilute copper-nickel alloys has been reported recently by a number of investigators (82, 87-90). Much of the experimental evidence comes from hydrogen adsorption data (74, 82, 87, 90). The conclusions of van der Plank and Sachtler were based on the premise that nickel chemisorbs hydrogen while copper does not (82, 87). The total adsorption of hydrogen at room temperature was taken as a measure of the amount of nickel in the surface. However, in hydrogen adsorption studies on the catalysts used to obtain the catalytic results in Fig. 6, the amount of adsorption on the copper catalyst, while small compared to the adsorption on nickel, is not negligible (74) However, the amount of strongly adsorbed... [Pg.113]

Fig. 8. The adsorption of hydrogen on copper-nickel catalysts as a function of the copper content. The circles represent the total amount of hydrogen adsorbed at room temperature at 10-cm pressure. The triangles represent the amount of strongly adsorbed hydrogen, i.e., the amount not removed by a 10-min evacuation at room temperature following the completion of the initial adsorption isotherm. The amount of strongly adsorbed hydrogen is determined as the difference between the initial isotherm and a subsequent isotherm obtained after a 10-min evacuation (74). Fig. 8. The adsorption of hydrogen on copper-nickel catalysts as a function of the copper content. The circles represent the total amount of hydrogen adsorbed at room temperature at 10-cm pressure. The triangles represent the amount of strongly adsorbed hydrogen, i.e., the amount not removed by a 10-min evacuation at room temperature following the completion of the initial adsorption isotherm. The amount of strongly adsorbed hydrogen is determined as the difference between the initial isotherm and a subsequent isotherm obtained after a 10-min evacuation (74).
Surface modification of skeletal nickel with tartaric acid produced catalysts capable of enantiose-lective hydrogenation [85-89], The modification was carried out after the formation of the skeletal nickel catalyst and involved adsorption of tartaric acid on the surface of the nickel. Reaction conditions strongly influenced the enantioselectivity of the catalyst. Both Ni° and Ni2+ have been detected on the modified surface [89]. This technique has already been expanded to other modified skeletal catalysts for example, modification with oxazaborolidine compounds for reduction of ketones to chiral alcohols [90],... [Pg.147]

Butanol, reaction over reduced nickel oxide catalysts, 35 357-359 effect of ammonia, 35 343 effect of hydrogen, 35 345 effect of pyridine, 35 344 effect of sodium, 35 342, 351 effect of temperature, 35 339 over nickel-Kieselguhr, 35 348 over supported nickel catalysts, 35 350 Butanone, hydrogenation of, 25 103 Butene, 33 22, 104-128, 131, 135 adsorption on zinc oxide, 22 42-45 by butyl alcohol dehydration, 41 348 chemisorption, 27 285 dehydrogenation, 27 191 isomerization, 27 124, 31 122-123, 32 305-308, 311-313, 41 187, 188 isomerization of, 22 45, 46 isomers... [Pg.58]

UHV surface analysis, apparatus designs, 36 4-14 see also Ultrahigh vacuum surface analysis mechanisms, 32 313, 319-320 Modified Raney nickel catalyst defined, 32 215-217 hydrogenation, 32 224-229 Modifying technique of catalysts, 32 262-264 Modulated-beam mass spectrometry, in detection of surface-generated gas-phase radicals, 35 148-149 MojFe S CpjfCOlj, 38 352 Molar integral entropy of adsorption, 38 158, 160-161... [Pg.145]

The chapter Chiral Modification of Catalytic Surfaces [84] in Design of Heterogeneous Catalysts New Approaches based on Synthesis, Characterization and Modelling summarizes the fundamental research related to the chiral hydrogenation of a-ketoesters on cinchona-modified platinum catalysts and that of [3-ketoesters on tartaric acid-modified nickel catalysts. Emphasis is placed on the adsorption of chiral modifiers as well as on the interaction of the modifier and the organic reactant on catalytic surfaces. [Pg.259]

Figure 5 shows data for catalytic activity, CO adsorption at 23°, surface area by the B.E.T. method using krypton at —196°, and the fast hydrogen adsorption at —196° plotted against the temperature at which the various films were sintered. All quantities were taken as unity for films sintered at 23°C. These experiments clearly indicate that the previously observed slow adsorption of hydrogen on nickel catalysts is not adsorption but is sorption consisting of adsorption and... [Pg.164]

Before leaving the nickel experiments, it may be well to refer to the experiments on hydrogen adsorption variously reported in the literature. As an example, the work of Maxted and Hassid (13) had as its main objective the measurement of the slow activated adsorption of hydrogen on reduced nickel oxide catalysts. It has been proved by the foregoing that the slow adsorption is actually absorption. When plotting their data as isobars, as was done in Fig. 9, the similarity between these isobars and those obtained with sintered nickel films is evident. [Pg.169]

It is clear that the influence of surface geometry upon catalytic activity is extremely complex and many more studies are required before any definitive relationship between catalytic activity and metal particle size can be established. Such studies will require to take cognisance of such factors as the perturbation of surface structure due to the formation of carbidic residues, as noted by Boudart [289] and by Thomson and Webb [95], and by the modification of catalytic properties on adsorption, as noted by Izumi et al. [296—298] and by Groenewegen and Sachtler [299] in studies of the modification of nickel catalysts for enantioselective hydrogenation. Possible effects of the support, as will be discussed in Sect. 6.3, must also be taken into account. [Pg.106]

Amidine derivatives are effective dehalogenation inhibitors for the chemoselective hydrogenation of aromatic halonitro compounds with Raney nickel catalysts. The best modifiers are unsubstituted or N-alkyl substituted formamidine acetates and dicyandiamide which are able to prevent dehalogenation even of very sensitive substrates. Our results indicate that the dehalogenation occurs after the nitro group has been completely reduced i.e. as a consecutive reaction from the halogenated aniline. A possible explanation for these observations is the competitive adsorption between haloaniline, nitro compound, reaction intermediates and/or modifier. The measurement of the catalyst potential can be used to determine the endpoint of the desired nitro reduction very accurately. [Pg.328]

Recently, a nickel zeolite hydrogenation catalyst has been prepared by a novel route (94) involving the adsorption and decomposition of nickel carbonyl onto NaX, which would not be expected to result in the formation of acid sites. In general, the platinum metal-containing zeolites are more active than those containing other transition metals. For example, in zeolite Y the following activity series has been found,... [Pg.19]

Results of previous investigations 23,110, 111, 113, 141, 157-165) show that hydrogen adsorption on nickel at room temperature is lowered by preadsorbed sulfur. Moreover, the fraction by which hydrogen adsorption is reduced in polycrystalline and supported nickel catalysts is generally proportional to the mean fractional coverage of sulfur. This is illustrated by data in Fig. 16 from Bartholomew and co-workers 112, 113, 141, 157-162). [Pg.173]


See other pages where Nickel catalyst hydrogen adsorption is mentioned: [Pg.133]    [Pg.42]    [Pg.41]    [Pg.105]    [Pg.15]    [Pg.61]    [Pg.115]    [Pg.133]    [Pg.178]    [Pg.281]    [Pg.220]    [Pg.162]    [Pg.191]    [Pg.258]    [Pg.629]    [Pg.16]    [Pg.66]    [Pg.18]    [Pg.153]    [Pg.29]    [Pg.87]    [Pg.163]    [Pg.169]    [Pg.289]    [Pg.409]    [Pg.239]    [Pg.184]    [Pg.210]    [Pg.227]    [Pg.3]    [Pg.24]    [Pg.89]    [Pg.98]    [Pg.118]   
See also in sourсe #XX -- [ Pg.153 , Pg.157 , Pg.162 , Pg.163 , Pg.164 , Pg.165 , Pg.166 , Pg.167 , Pg.168 , Pg.169 , Pg.170 , Pg.181 , Pg.182 , Pg.183 , Pg.184 ]




SEARCH



Adsorption catalyst

Catalysts hydrogen adsorptivity

Nickel adsorption

Nickel catalyst adsorption

Nickel hydrogen

Nickel hydrogen adsorption

Nickel hydrogenation catalyst

© 2024 chempedia.info