Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Neutron abundance

Thus, a nonstandard expansion rate (S / 1) is a well-motivated, one parameter modification of SBBN which has the potential to resolve some of its challenges. A slower expansion would leave more time for neutrons to become protons and a lower neutron abundance at BBN would result in a smaller Yp (good ). Since 4He is the most sensitive chronometer, the effect on its abundance is most significant. However, a modified expansion rate would also affect the predicted... [Pg.340]

In this description Fission Cycling has not been taken into account. But if the r-process involves nuclei with Z > 80, then fission should be included. In that case the heaviest nucleus fissions and a cyclic flow occurs between this nucleus and its fission fragments in the presence of large neutron abundance. [Pg.204]

Usuaiiy, the first and simpiest measurement is the neutron abundance as determined with a moderated BFs tube this gives a rather wide range for the possibie amount of piutonium, since the production rate of neutrons is influenced so greatiy by a, n reactions with the light elements in the system. Moderation, interposed tank walls, and multiplication in the source also affect the neutron count. Accordini y, an accurate estimate of an accumulation requires emi rical. calibration against a known amount of plutonium in as near Uie same condition amd composition as can be devised. [Pg.237]

Amplitude vs. Driving Frequency for Various Neutron Lifetimes and Delayed Neutron Abundances. [Pg.7]

Phase Angle vs Driving Frequency for Neutron Lifetime of 10 for Various Absolute Delayed Neutron Abundances. [Pg.7]

AMPLITUDE VS DRIVING FREQUENCY FOR VARIOUS NEUTRON LIFETIMES AND DELAYED NEUTRON ABUNDANCES... [Pg.76]

Carbon 12, the most abundant naturally occurring isotope, has zero spin and thus cannot be studied by NMR. On the other hand, its isotope carbon 13 has an extra neutron and can be its low natural occurrence (1.1%) nevertheless makes the task somewhat difficult. Only pulsed NMR can be utilized. [Pg.67]

Isotopes of an element are formed by the protons in its nucleus combining with various numbers of neutrons. Most natural isotopes are not radioactive, and the approximate pattern of peaks they give in a mass spectrum can be used to identify the presence of many elements. The ratio of abundances of isotopes for any one element, when measured accurately, can be used for a variety of analytical purposes, such as dating geological samples or gaining insights into chemical reaction mechanisms. [Pg.341]

It is not necessary that there be two isotopes in both the sample and the spike. One isotope in the sample needs to be measured, but the spike can have one isotope of the same element that has been produced artificially. The latter is often a long-lived radioisotope. For example, and are radioactive and all occur naturally. The radioactive isotope does not occur naturally but is made artificially by irradiation of Th with neutrons. Since it is commercially available, this last isotope is often used as a spike for isotope-dilution analysis of natural uranium materials by comparison with the most abundant isotope ( U). [Pg.366]

Isotope mass number Abundance, % Thermal neutron cross Contribution to the total cross ... [Pg.439]

Boron-10 has a natural abundance of 19.61 atomic % and a thermal neutron cross section of 3.837 x 10 m (3837 bams) as compared to the cross section of 5 x 10 m (0.005 bams). Boron-10 is used at 40—95 atomic % in safety devices and control rods of nuclear reactors. Its use is also intended for breeder-reactor control rods. [Pg.199]

The normal abundance of lithium-7 is 92.44 atomic %. Because of its low thermal neutron absorption cross section, ie, 3.7 x 10 °, highly enriched Li... [Pg.199]

Occurrence and Recovery. Rhenium is one of the least abundant of the naturally occurring elements. Various estimates of its abundance in Earth s cmst have been made. The most widely quoted figure is 0.027 atoms pet 10 atoms of silicon (0.05 ppm by wt) (3). However, this number, based on analyses for the most common rocks, ie, granites and basalts, has a high uncertainty. The abundance of rhenium in stony meteorites has been found to be approximately the same value. An average abundance in siderites is 0.5 ppm. In lunar materials, Re, when compared to Re, appears to be enriched by 1.4% to as much as 29%, relative to the terrestrial abundance. This may result from a nuclear reaction sequence beginning with neutron capture by tungsten-186, followed by p-decay of of a half-hfe of 24 h (4) (see Extraterrestrial materials). [Pg.160]

Boron [7440-42-8] B, is unique in that it is the only nonmetal in Group 13 (IIIA) of the Periodic Table. Boron, at wt 10.81, at no. 5, has more similarity to carbon and siUcon than to the other elements in Group 13. There are two stable boron isotopes, B and B, which are naturally present at 19.10—20.31% and 79.69—80.90%, respectively. The range of the isotopic abundancies reflects a variabiUty in naturally occurring deposits such as high B ore from Turkey and low °B ore from California. Other boron isotopes, B, B, and B, have half-Hves of less than a second. The B isotope has a very high cross-section for absorption of thermal neutrons, 3.835 x 10 (3835 bams). This neutron absorption produces alpha particles. [Pg.183]

The only large-scale use of deuterium in industry is as a moderator, in the form of D2O, for nuclear reactors. Because of its favorable slowing-down properties and its small capture cross section for neutrons, deuterium moderation permits the use of uranium containing the natural abundance of uranium-235, thus avoiding an isotope enrichment step in the preparation of reactor fuel. Heavy water-moderated thermal neutron reactors fueled with uranium-233 and surrounded with a natural thorium blanket offer the prospect of successful fuel breeding, ie, production of greater amounts of (by neutron capture in thorium) than are consumed by nuclear fission in the operation of the reactor. The advantages of heavy water-moderated reactors are difficult to assess. [Pg.9]

S2-4 Helium burning as additional process for nucleogenesis 19S4 Slow neutron absorption added to stellar reactions 195S-7 Comprehensive theory of stellar synthesis of all elements in observed cosmic abundances 196S 2.7 K radiation detected... [Pg.5]

Proton capture processes by heavy nuclei have already been briefly mentioned in several of the preceding sections. The (p,y) reaction can also be invoked to explain the presence of a number of proton-rich isotopes of lower abundance than those of nearby normal and neutron-rich isotopes (Fig. 1.5). Such isotopes would also result from expulsion of a neutron by a y-ray, i.e. (y,n). Such processes may again be associated with supernovae activity on a very short time scale. With the exceptions of " ln and " Sn, all of the 36 isotopes thought to be produced in this way have even atomic mass numbers the lightest is Se... [Pg.13]

Polonium, because of its very low abundance and very short half-life, is not obtained from natural sources. Virtually all our knowledge of the physical and chemical properties of the element come from studies on Po which is best made by neutron irradiation of in a nuclear reactor ... [Pg.749]

The overall reaction releases 3 X 108 kj for each gram of deuterium consumed. That energy corresponds to the energy generated when the Hoover Dam operates at full capacity for about an hour. Additional tritium is supplied to facilitate the process. Because tritium has a very low natural abundance and is radioactive, it is generated by bombarding lithium-6 with neutrons in the immediate surroundings of the reaction zone ... [Pg.840]

The composition of the Earth was determined both by the chemical composition of the solar nebula, from which the sun and planets formed, and by the nature of the physical processes that concentrated materials to form planets. The bulk elemental and isotopic composition of the nebula is believed, or usually assumed to be identical to that of the sun. The few exceptions to this include elements and isotopes such as lithium and deuterium that are destroyed in the bulk of the sun s interior by nuclear reactions. The composition of the sun as determined by optical spectroscopy is similar to the majority of stars in our galaxy, and accordingly the relative abundances of the elements in the sun are referred to as "cosmic abundances." Although the cosmic abundance pattern is commonly seen in other stars there are dramatic exceptions, such as stars composed of iron or solid nuclear matter, as in the case with neutron stars. The... [Pg.14]

The most abundant isotope is which constitutes almost 99% of the carbon in nature. About 1% of the carbon atoms are There are, however, small but significant differences in the relative abundance of the carbon isotopes in different carbon reservoirs. The differences in isotopic composition have proven to be an important tool when estimating exchange rates between the reservoirs. Isotopic variations are caused by fractionation processes (discussed below) and, for C, radioactive decay. Formation of takes place only in the upper atmosphere where neutrons generated by cosmic radiation react with nitrogen ... [Pg.284]

Figure 2-19 shows the mass spectrum of the element neon. The three peaks in the mass spectrum come from three different isotopes of neon, and the peak heights are proportional to the natural abundances of these isotopes. The most abundant isotope of neon has a mass number of 20, with 10 protons and 10 neutrons in its nucleus, whereas its two minor isotopes have 11 and 12 neutrons. Example illustrates how to read and interpret a mass spectmm. [Pg.86]

A sample of lead atoms is analyzed by mass spectrometry. The bar graph in the margin shows the results. Use information from the graph to write the elemental symbol that represents each Pb isotope and estimate the natural abundance of each. List the number of protons and neutrons for each isotope. [Pg.87]


See other pages where Neutron abundance is mentioned: [Pg.14]    [Pg.233]    [Pg.14]    [Pg.631]    [Pg.75]    [Pg.12]    [Pg.14]    [Pg.233]    [Pg.14]    [Pg.631]    [Pg.75]    [Pg.12]    [Pg.1287]    [Pg.335]    [Pg.338]    [Pg.339]    [Pg.19]    [Pg.20]    [Pg.191]    [Pg.326]    [Pg.14]    [Pg.675]    [Pg.2]    [Pg.12]    [Pg.13]    [Pg.13]    [Pg.864]    [Pg.878]    [Pg.1050]    [Pg.36]    [Pg.690]   
See also in sourсe #XX -- [ Pg.631 ]




SEARCH



© 2024 chempedia.info