Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Neck crystallization

Amorphous poly(ethylene terephthalate) (TG) 125-165 Tough thin-gauge Orients, toughens Transparent Sags, necks Crystallizes rapidly Difficult cold trim Trim must be recrystallized... [Pg.8484]

Place 5 ml. of benzaldehyde in a wide-necked stout-walled bottle of about 100 ml. capacity (a conical flask is too fragile for this purpose) and add 50 ml. of concentrated dy 0 880) ammonia solution. Cork the bottle securely, shake vigorously, and then allow to stand for 24 hours, by which time the layer of benzaldehyde at the bottom of the bottle will have been converted into a hard mass of hydrobenzamide. (If after 24 hours the crude hydrobenzamide is still syrupy, shake the mixture vigorously and allow to stand for another hour, when the conversion will be complete.) Break up the solid pellet with a strong spatula, filter at the pump, wash with water and drain thoroughly. Recrystallise from ethanol methylated spirit should not be used, as it contains sufficient water to cause partial hydrolysis back to benzaldehyde and ammonia. Hydrobenzamide is obtained as colourless crystals, m.p. 101° (and not 110° as frequently quoted) yield, 4 g. [Pg.230]

Assemble in a fume-cupboard the apparatus shown in Fig. 67(A). Place 15 g. of 3,5-dinitrobenzoic acid and 17 g. of phosphorus pentachloride in the flask C, and heat the mixture in an oil-bath for hours. Then reverse the condenser as shown in Fig. 67(B), but replace the calcium chloride tube by a tube leading to a water-pump, the neck of the reaction-flask C being closed with a rubber stopper. Now distil off the phosphorus oxychloride under reduced pressure by heating the flask C in an oil-bath initially at 25-30, increasing this temperature ultimately to 110°. Then cool the flask, when the crude 3,5-dinitro-benzoyl chloride will solidify to a brown crystalline mass. Yield, 16 g., i.e,y almost theoretical. Recrystallise from caibon tetrachloride. The chloride is obtained as colourless crystals, m.p. 66-68°, Yield, 13 g Further recrystallisation of small quantities can be performed using petrol (b.p. 40-60°). The chloride is stable almost indefinitely if kept in a calcium chloride desiccator. [Pg.243]

For solids which melt above 100° and are stable at this temperature, drying may be carried out in a steam oven. The crystals from the Buchner funnel should then be placed on a clock glass or in an open dish. The substance may sometimes be dried in the Buchner funnel itself by utilising the device illustrated in Fig. 77, <33, 1. An ordinary Pyrex funnel is inverted over the Buchner funnel and the neck of the funnel heated by means of a broad flame (alternatively, the funnel may be heated by a closely-fltting electric heating mantle) if gentle suction is applied to the Alter flask, hot (or warm) air will pass over the crystalline solid. [Pg.132]

C. Fumaric acid from furfural. Place in a 1-litre three-necked flask, fitted with a reflux condenser, a mechanical stirrer and a thermometer, 112 5 g. of sodium chlorate, 250 ml. of water and 0 -5 g. of vanadium pentoxide catalyst (1), Set the stirrer in motion, heat the flask on an asbestos-centred wire gauze to 70-75°, and add 4 ml. of 50 g. (43 ml.) of technical furfural. As soon as the vigorous reaction commences (2) bvi not before, add the remainder of the furfural through a dropping funnel, inserted into the top of the condenser by means of a grooved cork, at such a rate that the vigorous reaction is maintained (25-30 minutes). Then heat the reaction mixture at 70-75° for 5-6 hours (3) and allow to stand overnight at the laboratory temperature. Filter the crystalline fumaric acid with suction, and wash it with a little cold water (4). Recrystallise the crude fumaric acid from about 300 ml. of iif-hydrochloric acid, and dry the crystals (26 g.) at 100°. The m.p. in a sealed capillary tube is 282-284°. A further recrystaUisation raises the m.p. to 286-287°. [Pg.463]

Hydrolysis of benzyl cyanide to phenylacetamide. In a 1500 ml. three-necked flask, provided with a thermometer, reflux condenser and efficient mechanical stirrer, place 100 g. (98 ml.) of benzyl]cyanide and 400 ml. of concentrated hydrochloric acid. Immerse the flask in a water bath at 40°. and stir the mixture vigorously the benzyl cyanide passes into solution within 20-40 minutes and the temperature of the reaction mixture rises to about 50°, Continue the stirring for an additional 20-30 minutes after the mixture is homogeneous. Replace the warm water in the bath by tap water at 15°, replace the thermometer by a dropping funnel charged with 400 ml. of cold distilled water, and add the latter with stirring crystals commence to separate after about 50-75 ml. have been introduced. When all the water has been run in, cool the mixture externally with ice water for 30 minutes (1), and collect the crude phenylacetamide by filtration at the pump. Remove traces of phenylacetic acid by stirring the wet sohd for about 30 minutes with two 50 ml. portions of cold water dry the crystals at 50-80°. The yield of phenylacetamide, m.p. 154-155°, is 95 g. RecrystaUisation from benzene or rectified spirit raises the m.p. to 156°. [Pg.762]

Method 2. Equip a 1 htre thre necked flask with a double surface reflux condenser, a mechanical stirrer and a separatory funnel, and place 12 -2 g. of dry magnesium turnings, a crystal of iodine, 50 ml. of sodium-dried ether and 7-5 g. (5 ml.) of a-bromonaphthalene (Section IV,20) in the flask. If the reaction does not start immediately, reflux gently on a water bath until it does remove the water bath. Stir the mixture, and add a solution of 96 g. (65 ml.) of a-bromonaphthalene in 250 ml. of anhydrous ether from the separatory funnel at such a rate that the reaction is vmder control (1 -5-2 hours). Place a water bath under the flask and continue the stirring and refluxing for a further 30 minutes. The Grignard reagent collects as a heavy oil in the bottom of the flask ... [Pg.765]

Place 65 g. of clean dry zinc wool and a few crystals of iodine in a 2 5 htre three-necked flask, equipped with an efficient reflux condenser with drying tube, a mechanical stirrer, and a dropping funnel. Prepare a mixture... [Pg.875]

At HOY speeds, the rate of increase in orientation levels off but the rate of crystallization increases dramatically. Air drag and inertial contributions to the threadline stress become large. Under these conditions, crystallization occurs very rapidly over a small filament length and a phenomenon called neck-draw occurs (68,75,76). The molecular stmcture is stable, fiber tensde strength is adequate for many uses, thermal shrinkage is low, and dye rates are higher than traditional slow speed spun, drawn, and heat-set products (77). [Pg.330]

In a i-l. three-necked, round-bottom flask fitted with a mechanical stirrer through a mercury seal, a separatory funnel and an efficient reflux condenser to which a calcium chloride tube is attached, are placed 25 g. (1.03 moles) of magnesium turnings 140 cc. of dry ether, and a small crystal of iodine. The stirrei is started and a small portion (about 10 cc.) of a solution of 118.5 g. (i mole) of cyclohexyl bromide (Note i) in 120 cc. of dry ether is added through the separatory funnel. After the reaction starts, the remainder of the solution is run in at such a rate that the whole is added at the end of forty-five minutes. The mixture is stirred and refluxed for an additional thirty to forty-five minutes. [Pg.22]


See other pages where Neck crystallization is mentioned: [Pg.5797]    [Pg.724]    [Pg.5797]    [Pg.724]    [Pg.234]    [Pg.179]    [Pg.201]    [Pg.232]    [Pg.237]    [Pg.240]    [Pg.252]    [Pg.253]    [Pg.254]    [Pg.257]    [Pg.259]    [Pg.323]    [Pg.358]    [Pg.359]    [Pg.550]    [Pg.588]    [Pg.640]    [Pg.643]    [Pg.668]    [Pg.679]    [Pg.767]    [Pg.812]    [Pg.813]    [Pg.815]    [Pg.835]    [Pg.839]    [Pg.863]    [Pg.961]    [Pg.988]    [Pg.988]    [Pg.1012]    [Pg.177]    [Pg.202]    [Pg.233]    [Pg.35]    [Pg.382]    [Pg.296]    [Pg.78]   
See also in sourсe #XX -- [ Pg.724 ]




SEARCH



Crystal necking

Crystal necking

Neck

© 2024 chempedia.info