Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Naphthols metal complexes

Naphthol, l-(2-pyridylazo)-hexaamminecobalt(III) complex electron recording system, 6, 127 metallochromic indicators, 1, 546, 556 Naphthols metal complexes color photography, 6, 107... [Pg.171]

In mordant dyes, phenols, naphthols, and enolizable carbonyl compounds, such as pyrazolones, are generally the couplers. As a rule, 2 1 metal complexes are formed ia the afterchroming process. A typical example of a mordant dye is Eriochrome Black T (18b) which is made from the important dyestuff iatermediate nitro-l,2,4-acid, 4-amiQO-3-hydroxy-7-nitro-l-naphthalenesulfonic acid [6259-63-8]. Eriochrome Red B [3618-63-1] (49) (Cl Mordant Red 7 Cl 18760) (1, 2,4-acid — l-phenyl-3-methyl-5-pyrazolone) is another example. The equiUbrium of the two tautomeric forms depends on the nature of the solvent. [Pg.437]

Certain dyes when appHed by the afterchrome method are oxidized prior to metal complex formation. Examples iaclude. Chromotrope EB [3567-69-9] (52) (Cl Acid Red 14 Cl 14720) (naphthionic acid — l-naphthol-4-sulfonic acid) ia which a hydroxyl group is iatroduced by oxidation at the... [Pg.437]

Nitroso dyes are metal-complex derivatives of o-nitrosophenols or naphthols. Tautomerism is possible in the metal-free precursor between the nitrosohydroxy tautomer (76) and the quinoneoxime tautomer (77). [Pg.284]

The major problem of these diazotizations is oxidation of the initial aminophenols by nitrous acid to the corresponding quinones. Easily oxidized amines, in particular aminonaphthols, are therefore commonly diazotized in a weakly acidic medium (pH 3, so-called neutral diazotization) or in the presence of zinc or copper salts. This process, which is due to Sandmeyer, is important in the manufacture of diazo components for metal complex dyes, in particular those derived from l-amino-2-naphthol-4-sulfonic acid. Kozlov and Volodarskii (1969) measured the rates of diazotization of l-amino-2-naphthol-4-sulfonic acid in the presence of one equivalent of 13 different sulfates, chlorides, and nitrates of di- and trivalent metal ions (Cu2+, Sn2+, Zn2+, Mg2+, Fe2 +, Fe3+, Al3+, etc.). The rates are first-order with respect to the added salts. The highest rate is that in the presence of Cu2+. The anions also have a catalytic effect (CuCl2 > Cu(N03)2 > CuS04). The mechanistic basis of this metal ion catalysis is not yet clear. [Pg.27]

Hydroxylamine, IV-benzoyl-lV-phenyl-in gravimetry, 1, 532 liquid-liquid extraction, 1, 544 Hydroxylamine, A -cinnamoyl-A -phenyl-liquid-liquid extraction, 1,544 Hydroxylamine, Ar,A -di-(-butyl-metal complexes, 2, 798 Hydroxylamine, Ay/V-diethyl-metal complexes, 2,798 Hydroxylamine, AAmethyl-metal complexes, 2,798 Hydroxylamine, A -2-naphthol-A -nitroso-ammonium salt — see Ncocupferron Hydroxylamine, A -nilrosophenyl-ammonium salt — see Cupferron Hydroxylamine ligands, 2, 101 Hydroxylamine oxido reductase, 6, 727 Hydroxylases molybdenum, 6,658,662 Hydroxylation arenes... [Pg.142]

Dyes based on 4-phenylazo-l-naphthol (6) have been used extensively to study azo/hydrazone tautomerism since they exist as an equilibrium mixture of both the azo and hydrazone tautomers.8 However, they are of little use commercially and of no use whatsoever for metal complex azo dyes since the hydroxy group is not ortho to the azo group so these cannot act as chelating ligands. [Pg.552]

The l-phenylazo-2-naphthol (7) and particularly the 2-phenylazo-l-naphthol (8) systems are used extensively, providing many of the commercial metal complex azo colorants. Azo pigments are derived from (7) whilst azo dyes are obtained from (8). Both these types of colorant exist predominantly, if not exclusively, in the hydrazone tautomeric form.8,9... [Pg.552]

CL reaction can be catalyzed by enzymes other than HRP (e.g., microperoxidase and catalase) and by other substances [hemoglobin, cytochrome c, Fe(III), and other metal complexes]. The presence of suitable molecules such as phenols (p-iodophenol), naphthols (l-bromo-2-naphthol), or amines (p-anisidine) increases the light production deriving from the HRP-catalyzed oxidation of luminol and produces glow-type kinetics [6, 7], The use of other enzymes, such as glucose-6-phosphate dehydrogenase [38-41], P-galactosidase [42], and xanthine oxidase [43-46], as CL labels has been reported. [Pg.480]

The major problem of these diazotizations is oxidation of the initial aminophenols by nitrous acid to the corresponding quinones. Easily oxidized amines, in particular aminonaphthols, are therefore commonly diazotized in a weakly acidic medium (pH 3) so-called neutral diazotization or in the presence of zinc or copper salts. This process, which is due to Sandmeyer, is important in the manufacture of diazo components for metal complex dyes, in particular those derived from l-amino-2-naphthol-4-sulfonic acid. [Pg.637]

Chiral diols and tartrates have been studied as metal complexes as well. The enantiomers of l,l -bi-2-naphthol (Y) and diisopropyltartrate (T) have been... [Pg.204]

Metal complexes of o-hydroxynitroso compounds are principally of historical interest since the iron complex of l-nitroso-2-naphthol (Pigment Green B Cl 10006), which still finds commercial application as a green pigment, is the oldest fully synthetic metal complex dyestuff, dating back... [Pg.84]

BINOL and its derivatives have been utilized as versatile chiral sources for asymmetric catalysis, and efficient catalysts for their syntheses are, ultimately, required in many chemical fields [39-42]. The oxidative coupling of 2-naphthols is a direct synthesis of BINOL derivatives [43, 44], and some transition metals such as copper [45, 46], iron [46, 47] and manganese [48] are known as active metals for the reaction. However, few studies on homogeneous metal complexes have been reported for the asymmetric coupling of 2-naphthols [49-56]. The chiral self-dimerized V dimers on Si02 is the first heterogeneous catalyst for the asymmetric oxidative coupling of 2-naphthol. [Pg.45]

First, 1 2 metal complexes of (mainly mono-) azo dyes, without sulfonic or carboxylic acid groups, and trivalent metals (see Section 3.11). The metals are preferably chromium and cobalt nickel, manganese, iron, or aluminum are of lesser importance. Diazo components are mainly chloro- and nitroaminophenols or amino-phenol sulfonamides coupling components are (3-naphthol, resorcinol, and 1-phe-nyl-3-methyl-5-pyrazolone. Formation of a complex from an azo dye and a metal salt generally takes place in the presence of organic solvents, such as alcohols, pyridine, or formamide. An example is C.I. Solvent Red 8, 12715 [33270-70-1] (1). [Pg.296]

As a rule many of these dyes only have moderate lightfastness on paper. To improve this metal complexes are used, particularly with the blue azo dyes. Because planarity of the dye molecule is advantageous for a good dyeing, virtually only Cu2+ complexes such as C.I. DirectBlue 218,24401 28407-37-6] (18) are of interest for paper. 3.3 -Dimcthoxy-4,4 -biphcnyldiaminc (o-dianisidine) has proved particularly suitable, because after coupling with a 1-naphthol derivative demethylative copperization can take place. [Pg.465]

Morken and Lavastre used the formation of a colored side product to identify catalysts for the allylation of /i-dicarbonyl compounds [8]. The researchers employed 1-naphthyl allyl carbonate 5 as an allyl source and the diazonium salt of fast red as an indicator. Formation of the active 7z>allyl complex furnishes C02 and 1-naphthoxide which deprotonates the 1,3-dicarbonyl compounds which can, in turn, react with the 71-allyl metal complex. 1-Naphthol is the only species in the reaction mixture that can react with the diazonium salt 6 to generate the bright red azo dye fast red. Thus the red color is indicative of successful formation of the active re-allyl complex (Figure 5.4.3). [Pg.438]

Pyridylazo ligands have been widely used in the extraction photometry of various metal ions. For example, l-(2-pyridylazo)-2-naphthol (Hpan) is one of the most well-known reagents, but it shows slow extraction rate for some metal ions such as Ni(II) and Pd(II). 2-(5-Bromo-2-pyridylazo)-5-diethylaminophenol (5-Br-PADAP) is a relatively new reagent, which is more sensitive than Hpan for Cu(II), Ni(II), Co(II), and Zn(II), giving the metal complexes of molar absorptivities in the order of 105M-1 cm-1. [Pg.298]

Preparative Methods racemic l,l -bi-2,2 -naphthol (BINOL) is most conveniently prepared by the oxidative coupling reaction of 2-naphthol in the presence of transition metal complexes (eq 1). The resolution of racemic BINOL with cinchonine may be performed via the cyclic phosphate (eq 2). An alternative procedure to provide directly optically active BINOL is the oxidative coupling of 2-naphthol catalyzed by Cu salt in the presence of chiral amines (eq 3). The best procedure uses (+)-amphetamine as the chiral ligand and provides BINOL in 98% yield and 96% ee. Above 25 °C the Cu /(+)-amphetamine/(5)-BINOL complex precipitates, while the more soluble Cu /(+)-amphetamine/(I )-BINOL complex is slowly transformed into the former complex. 9,9 -Biphenanthrene-10,10 -diol has also been prepared in 86% yield and with 98% ee by a similar asymmetric oxidative coupling of 9-phenanthrol in the presence of (I )- 1,2-diphenylethylamine. ... [Pg.86]


See other pages where Naphthols metal complexes is mentioned: [Pg.398]    [Pg.398]    [Pg.426]    [Pg.312]    [Pg.171]    [Pg.127]    [Pg.296]    [Pg.553]    [Pg.563]    [Pg.353]    [Pg.421]    [Pg.206]    [Pg.384]    [Pg.392]    [Pg.556]    [Pg.41]    [Pg.43]    [Pg.62]    [Pg.44]    [Pg.97]    [Pg.201]    [Pg.206]    [Pg.217]    [Pg.41]    [Pg.43]    [Pg.62]   


SEARCH



© 2024 chempedia.info