Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nanoparticles surface areas

Carbon nanoparticle surface area (SA) focuses phosphorylation after particle interaction with lung epithelial cell (LEC) integrins and epithelial growth factor receptors (EGER) (33) Triggers LEC Phosphorylation (33), and Releases the apoptic (protein) kinase (Akt) cascade (33) and the interleukin IL6 (34)... [Pg.747]

It is clearly visible from Figure 28.24 that initial moduli of nanocomposites are higher than those of microcomposites at any loading, given that the surface activity and surface area between nanoparticles and microparticles are different. [Pg.794]

Considering that nanoparticles have much higher specific surface areas, in their assembled forms there are large areas of interfaces. One needs to know in detail not only the structures of these interfaces, but also their local chemistries and the effects of segregation and interaction between MBBs and their surroundings. The knowledge of ways to control nanostructure sizes, size distributions, compositions, and assemblies are important aspects of bottom-up nanotechnology [97]. [Pg.231]

Finke has reported remarkable catalytic lifetimes for the polyoxoanion- and tetrabutylammonium-stabi-lized transition metal nanoclusters [288-292]. For example in the catalytic hydrogenation of cyclohexene, a common test for structure insensitive reactions, the lr(0) nanocluster [296] showed up to 18,000 total turnovers with turnover frequencies of 3200 h [293]. As many as 190,000 turnovers were reported in the case of the Rh(0) analogue reported recently. Obviously, the polyoxoanion component prevents the precious metal nanoparticles from aggregating so that the active metals exhibit a high surface area [297]. [Pg.38]

Bimetallic nanoparticles (including monometallic ones) have attracted a great interest in scientific research and industrial applications, owing to their unique large sur-face-to-volume ratios and quantum-size effects [1,2,5,182]. Since industrial catalysts usually work on the surface of metals, the metal nanoparticles, which possess much larger surface area per unit volume or weight of metal than the bulk metal, have been considered as promising materials for catalysis. [Pg.65]

Dendrimer-protected colloids are capable of adsorbing carbon monoxide while suspended in solution, but upon removal from solution and support on a high surface area metal oxide, CO adsorption was nil presumably due to the collapse of the dendrimer [25]. It is proposed that a similar phenomena occurs on PVP-protected Pt colloids because removal of solvent molecules from the void space in between polymer chains most likely causes them to collapse on each other. Titration of the exposed surface area of colloid solution PVP-protected platinum nanoparticles demonstrated 50% of the total metal surface area was available for reaction, and this exposed area was present as... [Pg.153]

Without sonication, Pt particles adsorb primarily on the external surface of SBA-15 and at the mesopore openings. Sonication promotes homogeneous inclusion and deposition of Pt nanoparticles on the inner surface of the support mesopores, because ca. 90% of the total surface area is from the inner pore walls. Heat treatment... [Pg.154]

The kinetics of ethylene hydrogenation on small Pt crystallites has been studied by a number of researchers. The reaction rate is invariant with the size of the metal nanoparticle, and a structure-sensitive reaction according to the classification proposed by Boudart [39]. Hydrogenation of ethylene is directly proportional to the exposed surface area and is utilized as an additional characterization of Cl and NE catalysts. Ethylene hydrogenation reaction rates and kinetic parameters for the Cl catalyst series are summarized in Table 3. The turnover rate is 0.7 s for all particle sizes these rates are lower in some cases than those measured on other types of supported Pt catalysts [40]. The lower activity per surface... [Pg.156]

The small metal particle size, large available surface area and homogeneous dispersion of the metal nanoclusters on the supports are key factors in improving the electrocatalytic activity and the anti-polarization ability of the Pt-based catalysts for fuel cells. The alkaline EG synthesis method proved to be of universal significance for preparing different electrocatalysts of supported metal and alloy nanoparticles with high metal loadings and excellent cell performances. [Pg.337]

Zeolites have ordered micropores smaller than 2nm in diameter and are widely used as catalysts and supports in many practical reactions. Some zeolites have solid acidity and show shape-selectivity, which gives crucial effects in the processes of oil refining and petrochemistry. Metal nanoclusters and complexes can be synthesized in zeolites by the ship-in-a-bottle technique (Figure 1) [1,2], and the composite materials have also been applied to catalytic reactions. However, the decline of catalytic activity was often observed due to the diffusion-limitation of substrates or products in the micropores of zeolites. To overcome this drawback, newly developed mesoporous silicas such as FSM-16 [3,4], MCM-41 [5], and SBA-15 [6] have been used as catalyst supports, because they have large pores (2-10 nm) and high surface area (500-1000 m g ) [7,8]. The internal surface of the channels accounts for more than 90% of the surface area of mesoporous silicas. With the help of the new incredible materials, template synthesis of metal nanoclusters inside mesoporous channels is achieved and the nanoclusters give stupendous performances in various applications [9]. In this chapter, nanoclusters include nanoparticles and nanowires, and we focus on the synthesis and catalytic application of noble-metal nanoclusters in mesoporous silicas. [Pg.383]

One of the critical issues with regard to low temperamre fuel cells is the gradual loss of performance due to the degradation of the cathode catalyst layer under the harsh operating conditions, which mainly consist of two aspects electrochemical surface area (ECA) loss of the carbon-supported Pt nanoparticles and corrosion of the carbon support itself. Extensive studies of cathode catalyst layer degradation in phosphoric acid fuel cells (PAECs) have shown that ECA loss is mainly caused by three mechanisms ... [Pg.300]

In order to obtain high mass activity of Pt, it is essential to disperse Pt or alloy nanoparticles on high surface area supports. Some questions then arise. What kind of alloys and composition should we choose Is there any good parameter for screening the catalysts What size of catalyst particles should we prepare to obtain the maximum performance Unfortunately, there has been much controversy about such issues in the literature. [Pg.317]

The mass activity MA (in A g ) of the Pt catalyst is, of course, the product of the specific activity js (in A m ) and the specitic surface area 5mass (in ni g ) MA = js mass- Because S ass is inversely proportional to the particle diameter dpt, the use of supported Pt nanoparticles is effective for increasing MA, if js is a constant independent of dpt- However, even at pure Pt, conflicting results on the values of js and P(H202) have been reported, suggesting the presence of differences in electrochemical properties between bulk and supported nanoparticles. For example, Bregoli [1978]... [Pg.330]


See other pages where Nanoparticles surface areas is mentioned: [Pg.2344]    [Pg.331]    [Pg.331]    [Pg.23]    [Pg.61]    [Pg.692]    [Pg.694]    [Pg.394]    [Pg.2344]    [Pg.331]    [Pg.331]    [Pg.23]    [Pg.61]    [Pg.692]    [Pg.694]    [Pg.394]    [Pg.491]    [Pg.163]    [Pg.279]    [Pg.289]    [Pg.292]    [Pg.49]    [Pg.332]    [Pg.49]    [Pg.66]    [Pg.68]    [Pg.152]    [Pg.154]    [Pg.165]    [Pg.214]    [Pg.228]    [Pg.235]    [Pg.312]    [Pg.317]    [Pg.317]    [Pg.324]    [Pg.333]    [Pg.437]    [Pg.455]    [Pg.4]    [Pg.198]    [Pg.306]    [Pg.360]    [Pg.494]    [Pg.508]   
See also in sourсe #XX -- [ Pg.588 ]




SEARCH



© 2024 chempedia.info