Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nanoparticle iridium

Reductive H2O2 detection at nanoparticle iridium/carbon film electrode and its application as L-glutamate enzyme sensor. Electroanalysis, 16, 54-59. [Pg.327]

Iridium and rhodium nanoparticles have also been studied in the hydrogenation of various aromatic compoimds. In all cases, total conversions were not observed in BMI PF6. TOFs based on mol of cyclohexane formed were 44 h for toluene hydrogenation with Ir (0) and 24 h and 5 h for p-xylene reduction with lr(0) or Rh(0) nanoparticles, respectively. The cis-1,4-dimethylcyclohexane is the major product and the cisitrans ratio depends on the nature of the metal 5 1 for lr(0) and 2 1 for Rh(0). TEM experiments show a mean diameter of 2.3 nm and 2.1 nm for rhodium and iridium particles, respectively. The same nanoparticle size distribution is observed after catalysis (Fig. 4). [Pg.268]

Similarly to Iridium and rhodium nanoparticle studies, Dupont describes benzene hydrogenation in various media by platinum(O) nanoparticles prepared by simple decomposition of Pt2(dba)3 in BMI PFe at 75 °C and under 4 bar H2 [68]. The Pt nanoparticles were isolated by centrifugation and char-... [Pg.268]

The isolated Ru(0) nanoparticles were used as solids (heterogeneous catalyst) or re-dispersed in BMI PP6 (biphasic liquid-liquid system) for benzene hydrogenation studies at 75 °C and under 4 bar H2. As previously described for rhodium or iridium nanoparticles, these nanoparticles (heterogeneous catalysts) are efficient for the complete hydrogenation of benzene (TOP = 125 h ) under solventless conditions. Moreover, steric substituent effects of the arene influenced the reaction time and the decrease in the catalytic TOP 45, 39 and 18h for the toluene, iPr-benzene, tBu-benzene hydrogenation, respectively, finally. The hydrogenation was not total in BMI PPg, a poor TOE of 20 h at 73% of conversion is obtained in the benzene hydrogenation. [Pg.269]

The catalytic lifetime was studied by reusing the aqueous phase for three successive hydrogenation runs of toluene, anisole and cresol. Similar turnover activities were observed during the successive runs. These results show the good stability of the catalytically active iridium suspension as previously described with rhodium nanoparticles. [Pg.273]

Finally, these aqueous suspensions of rhodium(O) and iridium(O) are the most efficient systems for the hydrogenation of a large variety of mono-, di-substituted and/or functionalized arene derivatives. Moreover, in our approach, the reaction mixture forms a typical two-phase system with an aqueous phase containing the nanoparticle catalyst able to be easily reused in a recycling process. [Pg.273]

In the early work on the thermolysis of metal complexes for the synthesis of metal nanoparticles, the precursor carbonyl complex of transition metals, e.g., Co2(CO)8, in organic solvent functions as a metal source of nanoparticles and thermally decomposes in the presence of various polymers to afford polymer-protected metal nanoparticles under relatively mild conditions [1-3]. Particle sizes depend on the kind of polymers, ranging from 5 to >100 nm. The particle size distribution sometimes became wide. Other cobalt, iron [4], nickel [5], rhodium, iridium, rutheniuim, osmium, palladium, and platinum nanoparticles stabilized by polymers have been prepared by similar thermolysis procedures. Besides carbonyl complexes, palladium acetate, palladium acetylacetonate, and platinum acetylac-etonate were also used as a precursor complex in organic solvents like methyl-wo-butylketone [6-9]. These results proposed facile preparative method of metal nanoparticles. However, it may be considered that the size-regulated preparation of metal nanoparticles by thermolysis procedure should be conducted under the limited condition. [Pg.367]

Information on the chemical state of iridium on going from the molecular precursors, and its adsorption on the surface of the support can be obtained by Ir Mossbauer spectroscopy. It allows to estimate the composition of the Ir-containing alloys that are possibly formed during the activation treatment of supported bimetallic systems. The main results obtained in the application of Ir Mossbauer spectroscopy to characterize two Ir-containing bimetallic supported nanoparticles, i.e., Pt-Ir on amorphous silica and Fe-Ir on magnesia are presented and discussed... [Pg.335]

Recently, Dupont and coworkers described the use of room-temperature imi-dazolium ionic liquids for the formation and stabilization of transition-metal nanoparticles. The potential interest in the use of ionic liquids is to promote a bi-phasic organic-organic catalytic system for a recycling process. The mixture forms a two-phase system consisting of a lower phase which contains the nanocatalyst in the ionic liquid, and an upper phase which contains the organic products. Rhodium and iridium [105], platinum [73] or ruthenium [74] nanoparticles were prepared from various salts or organometallic precursors in dry 1-bu-tyl-3-methylimidazolium hexafluorophosphate (BMI PF6) ionic liquid under hydrogen pressure (4 bar) at 75 °C. Nanoparticles with a mean diameter of 2-3 nm... [Pg.243]

A new class of heterogeneous catalyst has emerged from the incorporation of mono- and bimetallic nanocolloids in the mesopores of MCM-41 or via the entrapment of pro-prepared colloidal metal in sol-gel materials [170-172], Noble metal nanoparticles containing Mex-MCM-41 were synthesized using surfactant stabilized palladium, iridium, and rhodium nanoparticles in the synthesis gel. The materials were characterized by a number of physical methods, showed that the nanoparticles were present inside the pores of MCM-41. They were found to be active catalysts in the hydrogenation of cyclic olefins such as cyclohexene, cyclooctene, cyclododecene, and... [Pg.82]

Catalysts other than homogeneous (molecular) compounds such as nanoparticles have been used in ionic liquids. For example, iridium nanoparticles prepared from the reduction of [IrCl(cod)2] (cod = cyclooctadiene) with H2 in [bmim][PF6] catalyses the hydrogenation of a number of alkenes under bipha-sic conditions [27], The catalytic activity of these nanoparticles is significantly more effective than many molecular transition metal catalysts operating under similar conditions. [Pg.91]

Iridium nanoparticles generated in l-n-butyl-3-methylimidazolium (BMI)-based ionic liquids were found to be excellent recyclable catalytic systems for the hydrogenation of a variety of substrates, including ketones such as simple ketones. The Ir nanoparticles were prepared by simple reduchon of [Ir(cod)Cl]2 dispersed in BMI-PFis at 75 °C under 4 atm of H2. Benzaldehyde, cyclopentanone, methyl butanone and derivatives were hydrogenated with almost complete conversion, with TOFs ranging from 17 to 96h under solventless conditions (substrate Ir ratio = 250, 75 °C, 4 atm FI2) [102]. [Pg.101]

Soluble and stable iridium nanoparticles (3.0 0.4nm diameter) have been prepared by reduction of the polyoxoanion-supported lr(l) complex (n-Bu4N)sNa3 [(C0D)lr(P2WisNb3062)] (COD = 1,5-cyclo-octadiene) with molecular hydrogen in... [Pg.369]

A simple and general method for the preparation of surfactant-free, thiol-functionalized iridium nanoparticles was reported by Ulman and coworkers in 1999 [11], The synthesis consisted of a reduction of the dihydrogen hexachloroiri-date (IV) H2lrCl6 H20 precursor by lithium triethylborohydride ( super-hydride ) in the presence of octadecanethiol (C18H37SH) in tetrahydrofuran (THF) (Scheme 15.1). The obtained iridium nanoparticles were crystaUine with fee (face-centered cubic) packing, and showed a wider size distribution with diameters ranging from 2.25 to 4.25 nm. [Pg.370]

Scheme 15.1 One-phase synthesis of thiol-functionalized iridium nanoparticles as proposed by Ulman and coworkers. Scheme 15.1 One-phase synthesis of thiol-functionalized iridium nanoparticles as proposed by Ulman and coworkers.
Figure 15.1 Transmission electron microscopy images showing iridium nanoparticles prepared in four different capping ligands, (a) Oleic acid/oleylamine (b) TOAB ... Figure 15.1 Transmission electron microscopy images showing iridium nanoparticles prepared in four different capping ligands, (a) Oleic acid/oleylamine (b) TOAB ...
An interesting method to produce water-soluble iridium nanoparticles was proposed by Chaudret and coworkers [13]. Here, aqueous soluble iridium nanoparticles were synthesized by the chemical reduction of iridium trichloride with sodium borohydride in an aqueous solution of the surfactant N,N-dimethyl-N-cetyl-N-(2-hydroxyethyl)ammonium chloride (Scheme 15.2). The precursor reduction was assisted by sonication, while the gradual conversion of Ir(lll) ions to lr(0) nanoparticles was followed using UV spectroscopy. The use of a molar surfactant Ir ratio of 10 proved sufficient to obtain stable aqueous soluble iridium nanoparticles however, if the molar surfactant Ir ratio used was <10 then agglomeration was observed in solution after several days. TEM analysis of the iridium nanoparticles revealed a monodispersed size distribution and a mean diameter of 1.9 0.7nm (Figure 15.2). [Pg.371]

I 75 Catalytic Properties of Soluble Iridium Nanoparticles NaBH4, surfactant, ultrasound irradiation... [Pg.372]

Scheme 15.2 System employed by Chaudret and coworkers to prepare soluble iridium nanoparticles in an aqueous medium. Scheme 15.2 System employed by Chaudret and coworkers to prepare soluble iridium nanoparticles in an aqueous medium.
Figure 15.2 Transmission electron microscopy image of iridium nanoparticles of 1.9 0.7nm in diameter (400 particles counted) prepared in the presence of the surfactant N,N-dimethyl-N-cetyl-N-(2-hydroxyethyl)ammonium chloride. (Reproduced with permission from Ref [13] 2004 Wiley-VCH). Figure 15.2 Transmission electron microscopy image of iridium nanoparticles of 1.9 0.7nm in diameter (400 particles counted) prepared in the presence of the surfactant N,N-dimethyl-N-cetyl-N-(2-hydroxyethyl)ammonium chloride. (Reproduced with permission from Ref [13] 2004 Wiley-VCH).
Scheme 15.3 Preparation of soluble iridium nanoparticles from in situ reduction of the organometallic precursor [ir(COD)Cl]2 in imidazolium ionic liquids. Scheme 15.3 Preparation of soluble iridium nanoparticles from in situ reduction of the organometallic precursor [ir(COD)Cl]2 in imidazolium ionic liquids.
Figure 15.4 Transmission electron microscopy images and size-distribution histograms (300 particles counted) for iridium nanoparticles prepared in (a) BMI BF (b) BMI PFs and (c) BMI CF3SO3. (Reproduced with permission from Ref [25] 2006 Elsevier). Figure 15.4 Transmission electron microscopy images and size-distribution histograms (300 particles counted) for iridium nanoparticles prepared in (a) BMI BF (b) BMI PFs and (c) BMI CF3SO3. (Reproduced with permission from Ref [25] 2006 Elsevier).
The typical in situ reduction of the precursor [lr(COD)Cl]2 by molecular hydrogen under the same reaction conditions have been also performed in 1-n-butyl-3-methylimidazolium trifluoromethanesulfonate (BMl-CFsSOs) and 1-n-butyl-3-methylimidazolium tetrafluoroborate (BMl-BF [25]. The iridium nanoparticles prepared in BMTCF3SO3 and BM1-BF4 ILs, as previously observed with BM1-PF6, display irregular shapes with a monomodal size distribution (Figure 15.4). Mean diameters in the range of 2-3 nm were estimated with in situ TEM and small-angle X-ray scattering (SAXS) analyses of the lr(0) nanoparticles soluble in the ionic hquids, and by X-ray diffraction (XRD) of the isolated material. The mean diameters of iridium nanoparticles synthesized in the three ILs, as estimated by TEM, SAXS and XRD, are summarized in Table 15.1. [Pg.373]

Table 15.1 Comparison of the mean diameters of iridium nanoparticles as determined by TEM, SAXS and XRD techniques [25],... Table 15.1 Comparison of the mean diameters of iridium nanoparticles as determined by TEM, SAXS and XRD techniques [25],...
XPS measurements showed clearly the interachons of the IL with the metal surface, that occurs through F (for BF4 and PF i) or O (for CF3SO1) of the anions, demonstrating the formation of an IL protechve layer surrounding the iridium nanoparticles. Additional extended X-ray absorption fine structure (EXAFS) analyses also provided evidence for interaction of the IL liquid with the metal surface. [Pg.374]


See other pages where Nanoparticle iridium is mentioned: [Pg.234]    [Pg.267]    [Pg.357]    [Pg.211]    [Pg.227]    [Pg.233]    [Pg.242]    [Pg.244]    [Pg.250]    [Pg.21]    [Pg.22]    [Pg.395]    [Pg.369]    [Pg.369]    [Pg.370]    [Pg.370]    [Pg.370]    [Pg.371]    [Pg.371]    [Pg.372]    [Pg.373]    [Pg.373]    [Pg.374]    [Pg.374]    [Pg.376]   
See also in sourсe #XX -- [ Pg.507 ]




SEARCH



Iridium nanoparticles

© 2024 chempedia.info