Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Multidimensional fractionation system

SEC in combination with multidimensional liquid chromatography (LC-LC) may be used to carry out polymer/additive analysis. In this approach, the sample is dissolved before injection into the SEC system for prefractionation of the polymer fractions. High-MW components are separated from the additives. The additive fraction is collected, concentrated by evaporation, and injected to a multidimensional RPLC system consisting of two columns of different selectivity. The first column is used for sample prefractionation and cleanup, after which the additive fraction is transferred to the analytical column for the final separation. The total method (SEC, LC-LC) has been used for the analysis of the main phenolic compounds in complex pyrolysis oils with minimal sample preparation [974]. The identification is reliable because three analytical steps (SEC, RPLC and RPLC) with different selectivities are employed. The complexity of pyrolysis oils makes their analysis a demanding task, and careful sample preparation is typically required. [Pg.555]

The main problem using planar methods is the difficulty in detection and collection of fractions among other less critical problems, such as homogeneous preparation of chromatographic media. However, the detection problem exists also for the coupled-column methods, mainly because of fraction dilution by each stage in a multidimensional separation system. Another aspect is the adjustment of chromatographic time bases between the different dimensions so that first-dimension peaks may be sampled an adequate number of times by the next dimension separation system. This aspect has been recently studied in detail (Murphy et al., 1998), and is covered in detail in Chapters 2 and 6. [Pg.389]

Figure 1 Schematic diagram of a multidimensional chromatography system. The two systems correspond to the methods employed, e.g., the GC or LC system. The separation channel may be an elution column or separation plane. Between the two systems is the process for transferring solute from the first to second dimensions. It may be a heart-cut process (GC-GC), a fraction collection step (LC-GC), a modulation process (GC X GC), or a plate positional change for planar TLC. Some systems will allow or require a detection step between the two systems, such as a monitor detector in MDGC. In the figure, step 1 refers to the sample application/injeclion step 2 to the interface or intermediate sample-processing device and step 3 to the elution of the separated sample into a detection system. Figure 1 Schematic diagram of a multidimensional chromatography system. The two systems correspond to the methods employed, e.g., the GC or LC system. The separation channel may be an elution column or separation plane. Between the two systems is the process for transferring solute from the first to second dimensions. It may be a heart-cut process (GC-GC), a fraction collection step (LC-GC), a modulation process (GC X GC), or a plate positional change for planar TLC. Some systems will allow or require a detection step between the two systems, such as a monitor detector in MDGC. In the figure, step 1 refers to the sample application/injeclion step 2 to the interface or intermediate sample-processing device and step 3 to the elution of the separated sample into a detection system.
A representation of the peak capacity of a planar two-dimensional system is presented in Fig. 1. A multidimensional ITPLC system in which the entire first dimension column effluent (not merely an interesting region) is reanalyzed as discrete fractions at regular intervals in the second dimension is referred to as using the comprehensive concept If only the components of interest from the first column effluent are subjected to separation on the second column, this is referred to as the heart-cutting technique. Heart-cutting techniques require that the retention properties of the analytes in the first dimension are known in advance. This technique is appropriate when only one or a few components need to be isolated. [Pg.671]

Figure 12.8 Mia ocolumn size exclusion chromatogram of a styrene-aaylonitrile copolymer sample fractions ti ansfeired to the pyrolysis system are indicated 1-6. Conditions fused-silica column (50 cm X 250 p.m i.d.) packed with Zorbax PSM-1000 (7p.m 4f) eluent, THF flow rate, 2.0 p.L/min detector, Jasco Uvidec V at 220 nm injection size, 20 nL. Reprinted from Analytical Chemistry, 61, H. J. Cortes et al, Multidimensional chromatography using on-line microcolumn liquid chromatography and pyrolysis gas chromatography for polymer characterization , pp. 961 -965, copyright 1989, with peimission from the American Chemical Society. Figure 12.8 Mia ocolumn size exclusion chromatogram of a styrene-aaylonitrile copolymer sample fractions ti ansfeired to the pyrolysis system are indicated 1-6. Conditions fused-silica column (50 cm X 250 p.m i.d.) packed with Zorbax PSM-1000 (7p.m 4f) eluent, THF flow rate, 2.0 p.L/min detector, Jasco Uvidec V at 220 nm injection size, 20 nL. Reprinted from Analytical Chemistry, 61, H. J. Cortes et al, Multidimensional chromatography using on-line microcolumn liquid chromatography and pyrolysis gas chromatography for polymer characterization , pp. 961 -965, copyright 1989, with peimission from the American Chemical Society.
Figure 12.9 Typical pyrolysis chromatogram of fraction from a styrene-acTylonitiile copolymer sample obtained from a miciocolumn SEC system 1, acrylonitrile 2, styrene. Conditions 5 % Phenylmetliylsilicone (0.33 p.m df) column (50 m X 0.2 mm i.d.) oven temperature, 50 to 240 °C at 10 °C/min carrier, gas, helium at 60 cm/s flame-ionization detection at 320 °C make-up gas, nitrogen at a rate of 20 mL/min. P indicates tlie point at which pyrolysis was made. Reprinted from Analytical Chemistry, 61, H. J. Cortes et ai, Multidimensional cliromatography using on-line microcolumn liquid cliromatography and pyrolysis gas cliromatography for polymer characterization , pp. 961-965, copyright 1989, with permission from tlie American Chemical Society. Figure 12.9 Typical pyrolysis chromatogram of fraction from a styrene-acTylonitiile copolymer sample obtained from a miciocolumn SEC system 1, acrylonitrile 2, styrene. Conditions 5 % Phenylmetliylsilicone (0.33 p.m df) column (50 m X 0.2 mm i.d.) oven temperature, 50 to 240 °C at 10 °C/min carrier, gas, helium at 60 cm/s flame-ionization detection at 320 °C make-up gas, nitrogen at a rate of 20 mL/min. P indicates tlie point at which pyrolysis was made. Reprinted from Analytical Chemistry, 61, H. J. Cortes et ai, Multidimensional cliromatography using on-line microcolumn liquid cliromatography and pyrolysis gas cliromatography for polymer characterization , pp. 961-965, copyright 1989, with permission from tlie American Chemical Society.
Figure 12.23 SFC-SFC analysis, involving a rotaiy valve interface, of a standard coal tar sample (SRM 1597). Two fractions were collected from the first SFC separation (a) and then analyzed simultaneously in the second SFC system (h) cuts a and h are taken between 20.2 and 21.2 min, and 38.7 and 40.2 min, respectively. Peak identification is as follows 1, tii-phenylene 2, chrysene 3, henzo[g/ i]perylene 4, antliracene. Reprinted from Analytical Chemistry, 62, Z. Juvancz et al, Multidimensional packed capillary coupled to open tubular column supercritical fluid chromatography using a valve-switcliing interface , pp. 1384-1388, copyright 1990, with permission from the American Chemical Society. Figure 12.23 SFC-SFC analysis, involving a rotaiy valve interface, of a standard coal tar sample (SRM 1597). Two fractions were collected from the first SFC separation (a) and then analyzed simultaneously in the second SFC system (h) cuts a and h are taken between 20.2 and 21.2 min, and 38.7 and 40.2 min, respectively. Peak identification is as follows 1, tii-phenylene 2, chrysene 3, henzo[g/ i]perylene 4, antliracene. Reprinted from Analytical Chemistry, 62, Z. Juvancz et al, Multidimensional packed capillary coupled to open tubular column supercritical fluid chromatography using a valve-switcliing interface , pp. 1384-1388, copyright 1990, with permission from the American Chemical Society.
Figure 15.12 GC-GC chromatogram of a natural cw-3-hexen-l-ol fraction. Peak identification is as follows 1, ethyl-2-methylbutyrate 2, traw-2-hexenal 3, 1-hexanol 4, cw-3-hexen-l-ol 5, tro 5-2-hexen-l-ol. Adapted from Journal of High Resolution Chromatography, 15, S. Nitz et al.. Multidimensional gas chromatography-isotope ratio mass specti ometry, (MDGC-IRMS). Part A system desaiption and technical requuements , pp. 387-391, 1992, with permission from Wiley-VCH. Figure 15.12 GC-GC chromatogram of a natural cw-3-hexen-l-ol fraction. Peak identification is as follows 1, ethyl-2-methylbutyrate 2, traw-2-hexenal 3, 1-hexanol 4, cw-3-hexen-l-ol 5, tro 5-2-hexen-l-ol. Adapted from Journal of High Resolution Chromatography, 15, S. Nitz et al.. Multidimensional gas chromatography-isotope ratio mass specti ometry, (MDGC-IRMS). Part A system desaiption and technical requuements , pp. 387-391, 1992, with permission from Wiley-VCH.
If simple sample pretreatment procedures are insufficient to simplify the complex matrix often observed in process mixtures, multidimensional chromatography may be required. Manual fraction collection from one separation mode and re-injection into a second mode are impractical, so automatic collection and reinjection techniques are preferred. For example, a programmed temperature vaporizer has been used to transfer fractions of sterols such as cholesterol and stigmasterol from a reversed phase HPLC system to a gas chromatographic system.11 Interfacing gel permeation HPLC and supercritical fluid chromatography is useful for nonvolatile or thermally unstable analytes and was demonstrated to be extremely useful for separation of compounds such as pentaerythritol tetrastearate and a C36 hydrocarbon standard.12... [Pg.91]

Applications Multidimensional SEC techniques can profitably be applied to soluble polymer/additive systems, e.g. PPO, PS, PC - thus excluding polyolefins. A fully automated on-line sample cleanup system based on SEC-HRGC for the analysis of additives in polymers has been described, as illustrated for PS/(200-400ppm Tin-uvin 120/327/770, Irgafos 168, Cyasorb UV531) [982], In this process, the high-MW fractions are separated from the low molecular masses. SEC is often used as a sample cleanup for on-line analysis of additives in food extracts these analyses are usually carried out as on-line LVI-SEC-GC-FPD. [Pg.556]

The literature reports various (multidimensional) chromatographic approaches involving SEC and LC operating on dissolved polymer/additive mixtures. Floyd [985] has used microbore (1 mm i.d.) SEC-RPLC for the quantitative analysis of Tinuvin P in a cellulose acetate solution in THF, after separation of the polymeric and additive fractions total analysis time about 30 min. Relative accuracy and precision of 3 % and 1.5% were quoted. SEC-RPLC was also used to determine the styrene level in polystyrene crystals [986]. Additives in copolymers have been separated in a SEC/C system [987]. Chlorohydrin mixtures may be analysed by RPLC, but not in the presence of polymer. Thus, SEC... [Pg.557]

Cortes et al. [18] have quantitatively determined polymer additives in a polycarbonate homopolymer and an ABS terpolymer. In that case, a multidimensional system consisting of a microcolumn SEC was coupled on-line to either capillary GC or a conventional LC system. The results show losses of certain additives when using the conventional precipitation approach. An at-column GC procedure has been developed for rapid determination (27 min) of high-MW additives (ca. 1200Da) at low concentrations (lOOppm) in 500- xL SEC fractions in DCM for on-line quality control (RSD of 2-7%) [36], Also, SEC-NPLC has been used for the analysis of additives in dissolution of polymeric... [Pg.695]


See other pages where Multidimensional fractionation system is mentioned: [Pg.489]    [Pg.489]    [Pg.290]    [Pg.290]    [Pg.466]    [Pg.1002]    [Pg.675]    [Pg.677]    [Pg.97]    [Pg.246]    [Pg.673]    [Pg.678]    [Pg.209]    [Pg.54]    [Pg.80]    [Pg.94]    [Pg.147]    [Pg.170]    [Pg.171]    [Pg.227]    [Pg.290]    [Pg.306]    [Pg.328]    [Pg.378]    [Pg.379]    [Pg.408]    [Pg.426]    [Pg.545]    [Pg.547]    [Pg.551]    [Pg.325]    [Pg.6]    [Pg.209]    [Pg.215]    [Pg.216]    [Pg.291]    [Pg.299]    [Pg.303]   


SEARCH



Fractionation systems

Multidimensional systems

© 2024 chempedia.info