Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Multicomponent distillation total reflux

Total reflux exists in a distillation column, whether a binary or multicomponent system, when all the overhead vapor from the top tray or stage is condensed and returned to the top tray. Usually a column is brought to equilibrium at total reflux for test or for a temporary plant condition which requires discontinuing feed. Rather than shut down, drain and then re-establish operating conditions later, it is usually more convenient and requires less... [Pg.21]

Example 8-25 Scheibel-Montross Minimum Reflux, 80 Minimum Number of Trays Total Reflux — Constant Volatility, 80 Chou and Yaws Method, 81 Example 8-26 Distillation with Two Sidestream Feeds, 82 Theoretical Trays at Operating Reflux, 83 Example 8-27 Operating Reflux Ratio, 84 Estimating Multicomponent Recoveries,... [Pg.497]

The two most frequently used empirical methods for estimating the stage requirements for multicomponent distillations are the correlations published by Gilliland (1940) and by Erbar and Maddox (1961). These relate the number of ideal stages required for a given separation, at a given reflux ratio, to the number at total reflux (minimum possible) and the minimum reflux ratio (infinite number of stages). [Pg.523]

Just as with binary distillation, it is important to understand the operating limits for multicomponent distillation. The two extreme conditions of total and minimum reflux will... [Pg.163]

Continuous multicomponent distillation simulation is illustrated by the simulation example MCSTILL, where the parametric runs facility of MADONNA provides a valuable means of assessing the effect of each parameter on the final steady state. It is thus possible to rapidly obtain the optimum steady state settings for total plate number, feed plate number and column reflux ratio via a simple use of sliders. [Pg.166]

The set of differential and algebraic equations given above for modeling multicomponent distillation in a packed column must be integrated numerically in general. The complexity and nonlinearity of the above equations precludes analytical solution in most cases of practical importance. Moreover, because the vapor and liquid streams flow in opposite directions means that, in all but one circumstance—total reflux—several integrations may be required in order to properly solve the equations. An alternative method of solving approximate forms of these equations is discussed in Chapter 14. [Pg.353]

The existence of a methane peak is not considered a phenomenon that will always occur with intermediately permeable gases in multicomponent mixtures. Rather, the peak is thought to be the result of a combination of factors. These factors include composition of the feed mixture, pure-gas permeabilities, and the internal reflux ratio. For instance. Figure 3 indicates that the intermediate-gas composition profile will steadily decrease in a stripper 1.0 m long, but otherwise identical to the column used in this study, fed with a 63.6% N2 - 32.3% CH - 4.1% CO2 mixture under similar total reflux conditions. The presence of an intermediate peak, however, is reminiscent of multicomponent distillation profiles and raises the possibility of withdrawing a side stream enriched with an intermediate gas. [Pg.266]

In this chapter, the fundamental principles and relationships involved in making multicomponent distillation calculations are developed from first principles. To enhance the visualization of the application of the fundamental principles to this separation process, a variety of special cases are considered which include the determination of bubble-point and dew-point temperatures, single-stage flash separations, multiple-stage separation of binary mixtures, and multiple-stage separation of multicomponent mixtures at the operating conditions of total reflux. [Pg.1]

NUMBER OF IDEAL PLATES AT OPERATING REFLUX. Although the precise calculation of the number of plates in multicomponent distillation is best accomplished by computer, a simple empirical method due to Gilliland is much used for preliminary estimates. The correlation requires knowledge only of the minimum number of plates at total reflux and the minimum reflux ratio. The correlation is given in Fig. 19,5 and is self-explanatory. An alternate method devised by Erbar and Maddox is especially useful when the feed temperature is between the bubble point and dew point. [Pg.608]

Fenske (1932) derived a rigorous solution for binary and multicomponent distillation at total reflux. The derivation assumes that the stages are equilibrium stages. Consider a multicomponent distillation column operating at total reflux. For an equilibrium partial reboiler, for any two components A and B,... [Pg.368]

For multicomponent mixtures, all components distribute to some extent between distillate and bottoms at total reflux conditions. However, at minimum reflux conditions none or only a few of the nonkey components distribute. Distribution ratios for these two limiting conditions are shown in Fig. 12.14 for the debutanizer example. For total reflux conditions, results from the Fenske equation in Example 12.3 plot as a straight line for the log-log coordinates. For minimum reflux, results from the Underwood equation in Example 12.5 are shown as a dashed line. [Pg.619]

A distillation curve is a plot of the mole fracs on every tray for distillatioa Distillation curves can be generated at total reflux or finite reflux. If you have run a multicomponent distillation simulation or solved a ternary distillation problem with a hand calculation, you have obtained the information (xy for j =... [Pg.309]

In industry many of the distillation processes involve the separation of more than two components. The general principles of design of multicomponent distillation towers are the same in many respects as those described for binary systems. There is one mass balance for each component in the multicomponent mixture. Enthalpy or heat balances are made which are similar to those for the binary case. Equilibrium data are used to calculate boiling points and dew points. The concepts of minimum reflux and total reflux as limiting cases are also used. [Pg.679]

Minimum stages for total reflux. Just as in binary distillation, the minimum number of theoretical stages or steps, can be determined for multicomponent distillation for total reflux. The Fenske equation (11.4-23) also applies to any two components in a multicomponent system. When applied to the heavy key H and the light key L, it... [Pg.683]

The state of the art for the batch distillation of multicomponent mixtures is even less satisfactory than for binary mixtures, and except for total reflux, no accurate and practical method is available even without liquid holdup in the column. This difficulty arises from the fact that, starting with a given liquid composition in the still, it is possible to calculate the equilibrium vapor leaving the still, but the composition of the overflow to the still from the first plate cannot be calculated without knowing the composition of the distillate leaving the system. In a binary system, it is possible to choose the composi-... [Pg.383]

As a guide to the characteristics of multicomponent batch distillation, the case of (1) total reflux with no liquid holdup in the column and (2) finite reflux ratio with no liquid holdup by an approximate method, will be considered. [Pg.384]

In this case the stepwise calculations can be carried out starting at the still, because the composition of the distillate does not affect the operating line. Thus for a given Xl the value of Xd can be calculated, but the calculation is still difficult for the general case because the concentration pattern followed by the liquid in the still is unknown. The pattern can be approximated by a stepwise integration, but the calculations are tedious. The general principles will be developed for the case in which all the relative volatilities remain constant, because in this case direct integration is possible. It is simpler to apply the relative volatility form of the simple distillation of Eq. (6-6) than to use Eq, (14-1). Thus, for any two components of a multicomponent mixture at total reflux,... [Pg.384]

The basic assumption of the Fenske-Underwood relation is that the ratio of the equilibrium constants or the relative volatility, as defined by Eq. (6.19), in a binary mixture or the two key components present in a multicomponent mixture remain constant over the temperatures encountered in the distillation column. If this can be assumed without the introduction of excessive error, the minimum number of plates at total reflux can be determined from... [Pg.330]

Example 10 Calculation of Multicomponent Batch Distillation A charge of 45.4 kg mol (100 Ih-mol) of 25 mole percent heuzeue, 50 mole percent monochlorohenzene (MCB), and 25 mole percent orthodichloro-henzene (DCB) is to he distilled in a hatch still consisting of a rehoiler, a column containing 10 theoretical stages, a total condenser, a reflux drum, and a distillate accumulator. Condenser-reflux drum and tray holdups are 0.0056 and... [Pg.1340]

For single separation duty, Bernot et al. (1991) presented a method to estimate batch sizes, operating times, utility loads, costs, etc. for multicomponent batch distillation. The approach is similar to that of Diwekar et al. (1989) in the sense that a simple short cut technique is used to avoid integration of a full column model. Their simple column model assumes negligible holdup and equimolal overflow. The authors design and, for a predefined reflux or reboil ratio, minimise the total annual cost to produce a number of product fractions of specified purity from a multicomponent mixture. [Pg.154]


See other pages where Multicomponent distillation total reflux is mentioned: [Pg.1273]    [Pg.1338]    [Pg.166]    [Pg.19]    [Pg.25]    [Pg.114]    [Pg.1096]    [Pg.1161]    [Pg.673]    [Pg.1459]    [Pg.1548]    [Pg.541]    [Pg.634]    [Pg.1456]    [Pg.1545]    [Pg.608]    [Pg.1277]    [Pg.1342]    [Pg.19]    [Pg.683]    [Pg.243]    [Pg.730]   
See also in sourсe #XX -- [ Pg.683 ]




SEARCH



Distillation total

Distillation total reflux

Multicomponent distillation

Reflux, distillation

© 2024 chempedia.info