Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Multicomponent distillation reflux, operating

Fenske (1932) derived a rigorous solution for binary and multicomponent distillation at total reflux. The derivation assumes that the stages are equilibrium stages. Consider a multicomponent distillation column operating at total reflux. For an equilibrium partial reboiler, for any two components A and B,... [Pg.368]

Just as with binary distillation, it is important to understand the operating limits for multicomponent distillation. The two extreme conditions of total and minimum reflux will... [Pg.163]

Multicomponent distillation, 393 absorption factor method, 398 azeotropic, 420-426 bubblepoint (BP) method, 406-409 computer program references. 404 concentration profiles, 394 distribution of non-kevs. 395 Edmister method, 398,399 extractive, 412, 417-422 feed tray location, 397 free variables, number of 395 Lewis-Matheson method 404 MESH eauations. 405-407 molecular, 425-427 nomenclature, 405 number of theoretical trays, 397 packed towers, 433-439 petroleum, 411-415 reflux, minimum, 397 reflux, operating, 397 SC (simultaneous correction) method, 408-411... [Pg.752]

If one or more unit operations have been given infeasible specifications, then the flowsheet will never converge. This problem also occurs with multicomponent distillation columns, particularly when purity specifications or flow rate specifications are used, or when nonadjacent key components are chosen. A quick manual mass balance around the column can usually determine whether the specifications are feasible. Remember that all the components in the feed must exit the column somewhere. The use of recovery specifications is usually more robust, but care is still needed to make sure that the reflux ratio and number of trays are greater than the minimum required. A similar problem is encountered in recycle loops if a component accumulates because of the separation specifications that have been set. Adding a purge stream usually solves this problem. [Pg.214]

In this chapter, the fundamental principles and relationships involved in making multicomponent distillation calculations are developed from first principles. To enhance the visualization of the application of the fundamental principles to this separation process, a variety of special cases are considered which include the determination of bubble-point and dew-point temperatures, single-stage flash separations, multiple-stage separation of binary mixtures, and multiple-stage separation of multicomponent mixtures at the operating conditions of total reflux. [Pg.1]

MINIMUM REFLUX RATIO. The minimum reflux ratio for a multicomponent distillation has the same significance as for binary distillation at this reflux ratio, the desired separation is just barely possible, but an infinite number of plates is required. The minimum reflux ratio is a guide in choosing a reasonable reflux ratio for an operating column and in estimating the number of plates needed for a given separation at certain values of the reflux ratio. [Pg.597]

NUMBER OF IDEAL PLATES AT OPERATING REFLUX. Although the precise calculation of the number of plates in multicomponent distillation is best accomplished by computer, a simple empirical method due to Gilliland is much used for preliminary estimates. The correlation requires knowledge only of the minimum number of plates at total reflux and the minimum reflux ratio. The correlation is given in Fig. 19,5 and is self-explanatory. An alternate method devised by Erbar and Maddox is especially useful when the feed temperature is between the bubble point and dew point. [Pg.608]

Total reflux exists in a distillation column, whether a binary or multicomponent system, when all the overhead vapor from the top tray or stage is condensed and returned to the top tray. Usually a column is brought to equilibrium at total reflux for test or for a temporary plant condition which requires discontinuing feed. Rather than shut down, drain and then re-establish operating conditions later, it is usually more convenient and requires less... [Pg.21]

Example 8-25 Scheibel-Montross Minimum Reflux, 80 Minimum Number of Trays Total Reflux — Constant Volatility, 80 Chou and Yaws Method, 81 Example 8-26 Distillation with Two Sidestream Feeds, 82 Theoretical Trays at Operating Reflux, 83 Example 8-27 Operating Reflux Ratio, 84 Estimating Multicomponent Recoveries,... [Pg.497]

For single separation duty, Al-Tuwaim and Luyben (1991) proposed a shortcut method to design and operate multicomponent batch distillation columns. Their method, however, required a great number of simulations, which must be computationally very expensive, before they could arrive at an optimum design and find an optimum reflux ratio. Further details are in Chapter 7. [Pg.154]

For single separation duty, Bernot et al. (1991) presented a method to estimate batch sizes, operating times, utility loads, costs, etc. for multicomponent batch distillation. The approach is similar to that of Diwekar et al. (1989) in the sense that a simple short cut technique is used to avoid integration of a full column model. Their simple column model assumes negligible holdup and equimolal overflow. The authors design and, for a predefined reflux or reboil ratio, minimise the total annual cost to produce a number of product fractions of specified purity from a multicomponent mixture. [Pg.154]

For single separation duty, Mujtaba and Macchietto (1993) proposed a method, based on extensions of the techniques of Mujtaba (1989) and Mujtaba and Macchietto (1988, 1989, 1991, 1992), to determine the optimal multiperiod operation policies for binary and general multicomponent batch distillation of a given feed mixture, with several main-cuts and off-cuts. A two level dynamic optimisation formulation was presented so as to maximise a general profit function for the multiperiod operation, subject to general constraints. The solution of this problem determines the optimal amount of each main and off cut, the optimal duration of each distillation task and the optimal reflux ratio profiles during each production period. The outer level optimisation maximises the profit function by... [Pg.154]

Both modes usually are conducted with constant vaporization rate at an optimum value for the particular type of column construction. Figure 13.9 represents these modes on McCabe-Thiele diagrams. Small scale distillations often are controlled manually, but an automatic control scheme is shown in Figure 13.9(c). Constant overhead composition can be assured by control of temperature or directly of composition at the top of the column. Constant reflux is assured by flow control on that stream. Sometimes there is an advantage in operating at several different reflux rates at different times during the process, particularly with multicomponent mixtures as on Figure 13.10. [Pg.416]

In this case the stepwise calculations can be carried out starting at the still, because the composition of the distillate does not affect the operating line. Thus for a given Xl the value of Xd can be calculated, but the calculation is still difficult for the general case because the concentration pattern followed by the liquid in the still is unknown. The pattern can be approximated by a stepwise integration, but the calculations are tedious. The general principles will be developed for the case in which all the relative volatilities remain constant, because in this case direct integration is possible. It is simpler to apply the relative volatility form of the simple distillation of Eq. (6-6) than to use Eq, (14-1). Thus, for any two components of a multicomponent mixture at total reflux,... [Pg.384]


See other pages where Multicomponent distillation reflux, operating is mentioned: [Pg.181]    [Pg.260]    [Pg.299]    [Pg.1161]    [Pg.634]    [Pg.1342]    [Pg.248]    [Pg.260]    [Pg.299]    [Pg.1296]    [Pg.1338]    [Pg.600]    [Pg.605]    [Pg.446]    [Pg.154]    [Pg.160]    [Pg.192]    [Pg.71]    [Pg.1119]    [Pg.50]    [Pg.1505]    [Pg.366]    [Pg.1502]    [Pg.608]    [Pg.438]    [Pg.1300]    [Pg.286]    [Pg.243]    [Pg.92]   
See also in sourсe #XX -- [ Pg.397 ]

See also in sourсe #XX -- [ Pg.422 ]

See also in sourсe #XX -- [ Pg.397 ]

See also in sourсe #XX -- [ Pg.397 ]

See also in sourсe #XX -- [ Pg.397 ]




SEARCH



Distillation operation

Multicomponent distillation

Operating Reflux

Reflux, distillation

© 2024 chempedia.info