Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Multicomponent coupling

The palladium-catalyzed multicomponent coupling reactions have attracted considerable interest.12,12a 12e A reaction using allylstannane 39 and allyl chloride 40 was applied to the three-component diallylation of benzylidenema-lonitrile and its congeners by Yamamoto et al 2 Analogous diallylation of isocyanate 41 was studied by Szabo et al. (Scheme 7).12a The reaction mechanism can be explained by formation of an amphoteric bis-allylpalladium intermediate 43 which undergoes an initial electrophilic attack on one of the allyl moieties followed by a nucleophilic attack on the other. [Pg.700]

The same research group has further performed radical carbonylation reactions on the same microreactor system [36]. First, alkyl halides were initiated and effectively reacted with pressurized carbon monoxide to form carbonyl compounds. The principle was subsequently successfully extrapolated to the multicomponent coupling reactions. 1-Iodooctane, carbon monoxide and methyl vinyl ketone were reacted in the presence of 2,2 -azobis(2,4-dimethylvaleronitrile) (V-65) as an initiator and tributyltin hydride or tris(trimethylsilyl)silane (TTMSS) as catalyst (Scheme 15). [Pg.173]

Free-radical-mediated Multicomponent Coupling Reactions... [Pg.169]

Radicals add to unsaturated bonds to form new radicals, which then undergo addition to other unsaturated bonds to generate further radicals. This reaction sequence, when it occurs iteratively, ultimately leads to the production of polymers. Yet the typical radical polymerization sequence also features the essence of radical-induced multicomponent assembling reactions, assuming, of course, that the individual steps occur in a controlled manner with respect to the sequence and the number of components. The key question then becomes how does one control radical addition reactions such that they can be useful multicomponent reactions Among the possibilities are kinetics, radical polar effects, quenching of the radicals by a one-electron transfer and an efficient radical chain system based on the judicious choice of a radical mediator. This chapter presents a variety of different answers to the question. Each example supports the view that a multicomponent coupling reaction is preferable to uncontrolled radical polymerization reactions, which can decrease the overall efficiency of the process. [Pg.169]

In designing multicomponent coupling reactions, the nature of the individual components is obviously a key factor. Generally speaking, carbon radical species, such as alkyl radicals, aryl radicals, vinyl radicals, and acyl radicals are all classified as nucleophilic radicals, which exhibit high reactivity toward electron-deficient alkenes [2]. To give readers some ideas about this, kinetic results on the addition of tert-butyl and pivaloyl radicals are shown in Scheme 6.2. These radicals add to acrylonitrile with rate constants of 2.4 x 106 M-1 s 1 and 5 x 105 M-1 s-1 at... [Pg.169]

Multicomponent Coupling Reactions Mediated by Group 14 Radicals I 175... [Pg.175]

The combination of carbon monoxide with sulfonyl oxime ethers allow for a set of multicomponent coupling reactions involving consecutive Cl/Cl-type coupling, a rare class of radical multicomponent reactions. In Scheme 6.27, examples of three-, four-, and five-component coupling reactions are shown [46], In these reactions, allyltin is not incorporated into the product, but serves as an acceptor of the phenylsulfonyl radical and a source of the tributyltin radical, which delivers the radical chain. [Pg.183]

Multicomponent Coupling Reactions Involving Electron-transfer Processes... [Pg.186]

The utility of Ru-catalyzed cross-metathesis in multicomponent coupling strategies has also been demonstrated. For instance, one-pot cross-metathesis/allylboration sequences have been reported by Miyaura [170] and by Goldberg and Grubbs [171]. Pinacol allyl boronate 174 was reacted with a series of functionalized olefins, which include symmetrically 1,2-disubstituted olefins as well as hindered olefins and styrenes, in the presence of catalyst 175 to produce intermediate allyl boro-nates (e.g. 176). The latter may then be reacted in situ with aldehydes to produce functionalized homoallylic alcohols with high levels of anti-selectivity (Scheme 8.80). [Pg.269]


See other pages where Multicomponent coupling is mentioned: [Pg.568]    [Pg.293]    [Pg.186]    [Pg.341]    [Pg.110]    [Pg.840]    [Pg.171]    [Pg.171]    [Pg.173]    [Pg.225]    [Pg.229]    [Pg.352]    [Pg.253]   
See also in sourсe #XX -- [ Pg.234 ]

See also in sourсe #XX -- [ Pg.417 , Pg.422 ]




SEARCH



Free-radical-mediated Multicomponent Coupling Reactions

Hetero-multicomponent Coupling Reactions

Isocyanide multicomponent coupling

Isocyanide multicomponent coupling reaction

Multicomponent Synthesis of Annelated Thiopyranones by Coupling-Addition-Nucleophilic Aromatic Substitution Sequence

Multicomponent coupling alkyne termination

Multicomponent coupling reaction

Multicomponent coupling-cycloaddition

Multicomponent coupling-cycloaddition sequences

Multicomponent reactions three-component couplings

One-pot multicomponent coupling

Smith-Tietze Multicomponent Dithiane Linchpin Coupling

© 2024 chempedia.info