Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Radical tributyltin

The exo and the endo ring closures (the kc reactions) are in competition with the aryl radical-tributyltin hydride transfer (the ks or ku reaction). These workers162 used this competition to determine the primary hydrogen-deuterium kinetic isotope effect in the hydride transfer reaction between the aryl radical and tributyltin hydride and deuteride. [Pg.818]

The simple addition reaction in Scheme 19 illustrates how the notation is used. Ester (1) can be dissected into synthons (2), (3) and (4). Synthons for radical precursors (pro-radicals) possess radical sites ( ) A reagent that is an appropriate radical precursor for the cyclohexyl radical, such as cyclohexyl iodide, is the actual equivalent of synthon (2). By nature, alkene acceptors have one site that reacts with a radical ( ) and one adjacent radical site ( ) that is created upon addition of a radical. Ethyl acrylate is a reagent that is equivalent to synthon (3). Atom or group donors are represented as sites that react with radicals ( ) Tributyltin hydride is a reagent equivalent of (4). In practice, such analysis will usually focus on carbon-carbon bond forming reactions and the atom transfer step may be omitted in the notation for simplicity. [Pg.732]

Acyl radicals. Tributyltin hydride in combination with AIBN can generate acyl radicals from phenylselenol esters, which are a better source than acyl chlorides or phenylthiol esters for acyl radicals for intramolecular cyclization. [Pg.329]

The hydrogenolyaia of cyclopropane rings (C—C bond cleavage) has been described on p, 105. In syntheses of complex molecules reductive cleavage of alcohols, epoxides, and enol ethers of 5-keto esters are the most important examples, and some selectivity rules will be given. Primary alcohols are converted into tosylates much faster than secondary alcohols. The tosylate group is substituted by hydrogen upon treatment with LiAlH (W. Zorbach, 1961). Epoxides are also easily opened by LiAlH. The hydride ion attacks the less hindered carbon atom of the epoxide (H.B. Henhest, 1956). The reduction of sterically hindered enol ethers of 9-keto esters with lithium in ammonia leads to the a,/S-unsaturated ester and subsequently to the saturated ester in reasonable yields (R.M. Coates, 1970). Tributyltin hydride reduces halides to hydrocarbons stereoselectively in a free-radical chain reaction (L.W. Menapace, 1964) and reacts only slowly with C 0 and C—C double bonds (W.T. Brady, 1970 H.G. Kuivila, 1968). [Pg.114]

Alkyl halides can be reduced to alkanes by a radical reaction with tributyltin hydride, (C4H9)3SnH, in the presence of light (hv). Propose a radical chain mechanism by which the reaction might occur. The initiation step is the light-induced homolytic cleavage of the Sn— H bond to yield a tributyltin radical. [Pg.358]

Stannylation of lithiated allyl ethers gives (Z)-3-alkoxyallylstannanes (1)115,116, whereas mixtures of (Z)- and ( )-tributyl(3-methoxy-2-propenyl)stannanes (2) were obtained from free-radical addition of tributyltin hydride to l-methoxy-l,2-propadienel16. [Pg.385]

Radical Diels-Alder reactions have been used mainly to synthesize polycyclic molecules. These reactions, like those that involve cations and anions as components, proceed quickly but generally do not give high yields. Thus, the tricyclic enone 14 is the result of an intramolecular Diels-Alder reaction of quenched vinyl radical intermediate 13 obtained by treating the iododienynone 12 with n-tributyltin hydride/2,2 -azobisisobutyronitrile (AIBN) [28] (Equation 1.11). [Pg.8]

The reaction of tributyltin hydride with ring-substituted benzyl chlorides gives a Hammett p-factor of -1-0.81, confirming the "nucleophilic character of the BusSn- radical (303). [Pg.26]

Our group has also reported that the alkylation products of 4-cyano-l,3-diox-anes can serve as substrates for radical atom transfer reactions [41]. One such example is shown below (Eq. 17). Slow addition of tributyltin hydride/AIBN to a refluxing solution of cyanohydrin 115 generated the radical nitrile transfer product 116. This method, though somewhat limited in scope, can provide access to syn-l,3-diols which maybe unstable to the vigorous Li/NHg reduction conditions. [Pg.72]

Zard and coworkers [32] reported a simple approach to create another group of natural products, namely the lycopodium alkaloids [15]. These authors first investigated the reaction of O-benzoyl-N-allylhydroxylamide 3-60 with tributyltin hydride and ACCN in refluxing toluene, which led (after formation of the N-radical 3-61 in a 5-exo-trig/5-exo-trig cyclization) to the undesired pyrrolidine 3-62 in 48% yield. Nevertheless, a small structural modification, namely the placement of a chlorine atom at the allyl moiety as in 3-63, induced a 5-exo-/G-endo- instead of the 5-exo-/5-... [Pg.230]

The [6.5.5]-ring fused tricyclic motif is found in many natural products, and has therefore become an important target in synthesis. A convenient access to this structural framework is offered by a radical domino procedure published by the Nagano group [41]. This reaction of optical pure dibromoacetal 3-85 led to the desired tricycle 3-87 via 3-86 as a single diastereoisomer in a very respectable yield of 94% by applying classical radical conditions (excess tributyltin hydride/AIBN, irradia-... [Pg.234]

An efficient methodology for the construction of pyrrolizidines and other polycyclic nitrogen heterocycles using a radical domino sequence has been revealed by Bowman and coworkers [46]. These authors employed sulfenamides as substrates, which easily form aminyl radicals by treatment with tributyltin hydride and AIBN. For instance, 3-101 smoothly underwent a twofold 5-exo-trig cyclization to give the tetracyclic pyrrolizidine product 3-105 in 90% yield (Scheme 3.26). As intermediates, the radicals 3-102 to 3-104 can be assumed. [Pg.236]

The vinylic carbon-tellurium bond in 3-129 can easily be cleaved by a tributyltin radical to afford vinyl radical 3-131, which can undergo further transformations as hydrogenation or C-C-bond formation, for example with dimethylfumarate in a (Z)-selective mode. [Pg.242]

The connection of radical and pericyclic transformations in one and the same reaction sequence seems to be on the fringe within the field of domino processes. Here, we describe two examples, both of which are highly interesting from a mechanistic viewpoint. The first example addresses the synthesis of dihydroindene 3-326 by Parsons and coworkers, starting from the furan 3-321 (Scheme 3.79) [128]. Reaction of 3-321 with tributyltin hydride and AIBN in refluxing toluene led to the 1,3,5-hexatriene 3-324 via the radicals 3-322 and 3-323. 3-324 then underwent an elec-trocyclization to yield the hexadiene 3-325 which, under the reaction conditions, aromatized to afford 3-326 in 51 % yield. [Pg.272]

One of the very rare examples of a combination of a radical with a pericydic reaction - in this case a [4+2] Diels-Alder cycloaddition - is depicted in Scheme 3.83 [133]. The sequence, elaborated by Malacria and coworkers, is based on the premise that the vinyl radical 3-341 formed from the substrate 3-340 using tributyltin hydride exists mainly in the Z -form. This is reduced by a hydrogen atom to form a 1,3-diene, which can undergo an intramolecular Diels-Alder reaction via an exotransition state reaction (the chain lies away from diene). [Pg.275]

Radical cyclization of the indole thioesters 107 and 110 with tributyltin hydride and 2,2 -azobisisobutyronitrile (AIBN) gives a mixture of products in each case the 6-< Wo-cyclization product (the indolonaphthyridine, 109 or 112) and the 5-f vv-cyclisation product (the spiro compound 108 or 111) are obtained in approximately equal yield (Equations 22 and 23) <20040L759>. [Pg.882]

In the presence of AIBN, tributyltin hydride is an excellent dehalogenating reagent for generating radicals. The bromoalkylcyclobutanone 206 undergoes reductive ring expansion to give, via the annealed alkoxy radical, the cis-fiised bicycle 207 stereospecifically as the major product [113], (Scheme 81)... [Pg.140]

Similarly, the reaction of photoexcited 9,10-dicyanoanthracene (DCA) with a benzylstannane yields the contact ion pair in which the cation radical undergoes rapid mesolytic cleavage of the C—Sn bond to afford benzyl radical and tributyltin cation (which then adds to DCA- )77 (Scheme 14). When such unimolecular processes are faster than the energy-wasting back electron transfer (/cbet) within the contact ion pair, the D/A reactions occur rapidly despite unfavorable driving forces for electron transfer. [Pg.229]


See other pages where Radical tributyltin is mentioned: [Pg.821]    [Pg.821]    [Pg.107]    [Pg.301]    [Pg.83]    [Pg.364]    [Pg.954]    [Pg.1086]    [Pg.131]    [Pg.895]    [Pg.86]    [Pg.213]    [Pg.217]    [Pg.259]    [Pg.593]    [Pg.954]    [Pg.1086]    [Pg.74]    [Pg.225]    [Pg.225]    [Pg.233]    [Pg.234]    [Pg.259]    [Pg.260]    [Pg.263]    [Pg.264]    [Pg.935]    [Pg.6]    [Pg.300]    [Pg.251]    [Pg.523]   
See also in sourсe #XX -- [ Pg.278 , Pg.287 ]




SEARCH



Tributyltin

Tributyltins

© 2024 chempedia.info