Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mukaiyama-type aldol reaction with aldehydes

The structural variant 7 of Corey s bifluoride catalyst 4 was prepared later by Andrus and coworkers and applied as a catalyst (20mol%) to the asymmetric Mukaiyama-type aldol reaction of aldehydes with the enol silylether 8 [6]. Excellent diastereoselectivity (up to >99/1) for the syn-aldol product 9 was achieved, especially with aromatic aldehydes. However, only moderate to good enantioselectivity (44—83% ee) was obtained (Scheme 8.3). [Pg.199]

As shown in Scheme 8.2, chiral P-hydroxy-a-amino adds can be obtained by the Mukaiyama-type aldol reaction of aldehydes with glycine-derived enol silyl ethers using cinchona-based quaternary ammonium salts. In 2004, Castle and coworkers [9] found that dnchona-based quaternary ammonium salts such as 13 are also able to catalyze the dired aldol readion of aldehydes with the glydne donor 14 in the presence of a phosphazene base such as BTTP (t-butyliminotri(pyrrolidino)phos-... [Pg.200]

Reductive aldol reaction of a,(5-unsaturated esters and enones with aldehyde mediated by a transition metal hydride complex and a hydride source, such as hydrosilane, is a versatile process to produce p-hydroxy carbonyl compounds (Scheme 15a) [21]. This reaction is thought to be an alternative transformation of Lewis acid-catalyzed Mukaiyama-type aldol reaction with silyl enol ethers or silyl ketene acetals (Scheme 15b). [Pg.195]

Stereoselectivities of 99% are also obtained by Mukaiyama type aldol reactions (cf. p. 58) of the titanium enolate of Masamune s chired a-silyloxy ketone with aldehydes. An excess of titanium reagent (s 2 mol) must be used to prevent interference by the lithium salt formed, when the titanium enolate is generated via the lithium enolate (C. Siegel, 1989). The mechanism and the stereochemistry are the same as with the boron enolate. [Pg.62]

A Mukaiyama-type aldol reaction of silyl ketene thioacetal (48) with an aldehyde with large and small a-substituents (e.g. Ph and Me), catalysed by boron trifluoride etherate, gives mainly the iyn-isomer (49), i.e. Cram selectivity. For the example given, changing R from SiBu Me2 to Si(Pr )3 raises the syn preference considerably, which the authors refer to as the triisopropylsilyl effect. Even when the and R groups are as similar as ethyl and methyl, a syn. anti ratio of 5.4 was achieved using the triisopropylsilyl ketene thioacetal. [Pg.12]

Recently, Corey and coworkers prepared the cinchonidine-derived bifluoride 20 from the corresponding bromide by passage of a methanolic solution through a column of Amberlyst A-26 OH- form, and subsequent neutralization with 2 equiv. of 1 N HF solution and evaporation (the modified method C in Scheme 9.5). The catalytic activity and chiral efficiency of 20 (dried over P205 under vacuum) have been demonstrated by the development of a Mukaiyama-type aldol reaction of ketene silyl acetal 21 with aldehydes under mild conditions, giving mostly syw-P-hydroxy-a-amino esters 22 as the major diastereomer with good to excellent enantiomeric excesses (Table 9.4) [23],... [Pg.198]

Table 4.1 The chiral ammonium bifluoride 12-catalyzed asymmetric Mukaiyama-type aldol reaction of ketene silyl acetal 13 with aldehydes. (For experimental details see Chapter 14.1.5)... Table 4.1 The chiral ammonium bifluoride 12-catalyzed asymmetric Mukaiyama-type aldol reaction of ketene silyl acetal 13 with aldehydes. (For experimental details see Chapter 14.1.5)...
Other important aldol condensations are the Mukaiyama-type aldol reactions of silyl enol ethers with aldehydes that usually require catalyst activation. Yamamoto reported that such reactions under high pressure proceed (i) without catalyst even at room temperature, (ii) without isomerization of the formed adducts and (iii) with a reversed synlanti stereoselectivity compared with that of the TiCU-catalysed reactions. ... [Pg.262]

Catalyzed Mukaiyama-type aldol reactions of silyl enol ethers or silyl ketene acetals with aldehydes lead to the same products. For recent advances see a) G. E. Keck, D. Krishnamurthy, J. Am. Chem. Soc. 1995, 117, 2363 b) M. Sato, S. Sunami, Y. Sugita, C. Kaneko, Heterocycles 1995, 41, 1435, and references therein. [Pg.26]

Uno et oL reported a Mukaiyama-type aldol reaction of l-tcrt-butoxycarbonyl-2-(tert-butyldimethylsiloxy)pyrrole with aliphatic or aromatic aldehydes in the presence of BF3 Et20 to give the corresponding erythro- or threo-isomers, respectively... [Pg.537]

The asymmetric Mukaiyama-type aldol reaction is a representative example of ammonium fluoride-catalyzed reactions (Scheme 14.7) (25). In the first step, silyl enol ether 10 reacts with ammonium fluoride to produce ammonium enolate 11 with generation of trialkylsilyl fluoride. The ammonium enolate 11 then reacts with aldehyde to produce ammonium alkoxide 12. Attack of this alkoxide anion on silyl enol ether 10 leads to the regeneration of ammonium enolate 11 and the formation of silylated aldol product 13. [Pg.373]

The chiral acyloxyborane 7 (CAB) has also been found to be an excellent catalyst for asymmetric Mukaiyama-Michael type aldol reaction between silyl enol ethers and aldehydes (Scheme 8). Yamamoto et al. [27] have used 20 mol % of CAB in propionitrile at -78 °C as a highly efficient catalyst for the condensation of several E and Z silyl enol ethers and ketene acetals with a variety of aldehydes (yields 49-97 %, 80-97 % ee). [Pg.47]

Another SBU with open metal sites is the tri-p-oxo carboxylate cluster (see Section 4.2.2 and Figure 4.2). The tri-p-oxo Fe " clusters in MIL-100 are able to catalyze Friedel-Crafts benzylation reactions [44]. The tri-p-oxo Cr " clusters of MIL-101 are active for the cyanosilylation of benzaldehyde. This reaction is a popular test reaction in the MOF Hterature as a probe for catalytic activity an example has already been given above for [Cu3(BTC)2] [15]. In fact, the very first demonstration of the catalytic potential of MOFs had aheady been given in 1994 for a two-dimensional Cd bipyridine lattice that catalyzes the cyanosilylation of aldehydes [56]. A continuation of this work in 2004 for reactions with imines showed that the hydrophobic surroundings of the framework enhance the reaction in comparison with homogeneous Cd(pyridine) complexes [57]. The activity of MIL-lOl(Cr) is much higher than that of the Cd lattices, but in subsequent reaction rans the activity decreases [58]. A MOF with two different types of open Mn sites with pores of 7 and 10 A catalyzes the cyanosilylation of aromatic aldehydes and ketones with a remarkable reactant shape selectivity. This MOF also catalyzes the more demanding Mukaiyama-aldol reaction [59]. [Pg.81]

Polar polyoxyethylene-polyoxypropylene (POEPOP) resin, deriva-tized with a 4-hydroxymethyl phenoxy linker, was used as a solid support for lanthanide triflate-catalyzed Mukaiyama-type solid-phase aldol reactions.282 The use of an aqueous solvent was found to be crucial. The reactions on an N-terminal peptide aldehyde substrate proceeded in very high yields. [Pg.274]

Aldol and Related Condensations As an elegant extension of the PTC-alkylation reaction, quaternary ammonium catalysts have been efficiently utilized in asymmetric aldol (Scheme 11.17a)" and nitroaldol reactions (Scheme ll.lTb) for the constmction of optically active p-hydroxy-a-amino acids. In most cases, Mukaiyama-aldol-type reactions were performed, in which the coupling of sUyl enol ethers with aldehydes was catalyzed by chiral ammonium fluoride salts, thus avoiding the need of additional bases, and allowing the reaction to be performed under homogeneous conditions. " It is important to note that salts derived from cinchona alkaloids provided preferentially iyw-diastereomers, while Maruoka s catalysts afforded awh-diastereomers. [Pg.338]

By 1989 Mukaiyama had already explored the behaviour of phosphonium salts as Lewis acid catalysts. It was possible to show that the aldol-type reaction of aldehydes or acetals with several nucleophiles and the Michael reaction of a,j3-unsatu-rated ketones or acetals with silyl nucleophiles gave the products in good yields with a phosphonium salt catalyst [116]. In addition, the same group applied bisphosphonium salts as shown in Scheme 45 in the synthesis of ]3-aminoesters [117]. High yields up to 98% were obtained in the reaction of A-benzylideneaniline and the ketene silyl acetal of methyl isobutyrate. Various analogues of the reaction parteers gave similar results. The bisphosphonium salt was found to be superior to Lewis acids like TiCl and SnCl, which are deactivated by the resulting amines. [Pg.370]

The silatropic ene pathway, that is, direct silyl transfer from an silyl enol ether to an aldehyde, may be involved as a possible mechanism in the Mukaiyama aldol-type reaction. Indeed, ab initio calculations show that the silatropic ene pathway involving the cyclic (boat and chair) transition states for the BH3-promoted aldol reaction of the trihydrosilyl enol ether derived from acetaldehyde with formaldehyde is favored [60], Recently, we have reported the possible intervention of a silatropic ene pathway in the catalytic asymmetric aldol-type reaction of silyl enol ethers of thioesters [61 ]. Chlorine- and amine-containing products thus obtained are useful intermediates for the synthesis of carnitine and GABOB (Scheme 8C.26) [62],... [Pg.563]

Keck [63] and Carreira [64] have independently reported catalytic asymmetric Mukaiyama aldol reactions. Keck et al. also reported the aldol reaction of an a-benzyloxy aldehyde with a Danishefsky s diene. The aldol product was transformed to the corresponding HDA-type product through acid-catalyzed cyclization. In these reactions, the catalyst that is claimed to... [Pg.563]


See other pages where Mukaiyama-type aldol reaction with aldehydes is mentioned: [Pg.1237]    [Pg.1237]    [Pg.223]    [Pg.223]    [Pg.61]    [Pg.314]    [Pg.132]    [Pg.13]    [Pg.125]    [Pg.132]    [Pg.374]    [Pg.466]    [Pg.140]    [Pg.110]    [Pg.178]    [Pg.178]    [Pg.113]    [Pg.435]    [Pg.178]    [Pg.436]    [Pg.436]    [Pg.494]    [Pg.436]    [Pg.812]    [Pg.812]    [Pg.273]    [Pg.432]    [Pg.152]    [Pg.327]    [Pg.69]   


SEARCH



Aldehydes aldol reactions

Aldol Mukaiyama-type

Aldol-type reactions with aldehydes

Mukaiyama

Mukaiyama aldol reaction

Mukaiyama reaction with

Mukaiyama-type reactions

© 2024 chempedia.info