Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Motion, diffusional

When a pure gas flows through a channel the accompanying fall in pressure is accounted for partly by acceleration of the flowing stream and partly by momentum transfer to the stationary walls. Since a porous medium may be regarded as an assembly of channels, similar considerations apply to flow through porous media, but in the diffusional situations of principal interest here accelerational pressure loss can usually be neglected. If more than one molecular species is present, we are also interested in the relative motions of the different species, so momentum transfers by collisions between different types of molecules are also important. [Pg.6]

All of these time correlation functions contain time dependences that arise from rotational motion of a dipole-related vector (i.e., the vibrationally averaged dipole P-avejv (t), the vibrational transition dipole itrans (t) or the electronic transition dipole ii f(Re,t)) and the latter two also contain oscillatory time dependences (i.e., exp(icofv,ivt) or exp(icOfvjvt + iAEi ft/h)) that arise from vibrational or electronic-vibrational energy level differences. In the treatments of the following sections, consideration is given to the rotational contributions under circumstances that characterize, for example, dilute gaseous samples where the collision frequency is low and liquid-phase samples where rotational motion is better described in terms of diffusional motion. [Pg.427]

Diffusional interception or Brownian motion, ie, the movement of particles resulting from molecular collisions, increases the probability of particles impacting the filter surface. Diffusional interception also plays a minor role in Hquid filtration. The nature of Hquid flow is to reduce lateral movement of particles away from the fluid flow lines. [Pg.139]

Below about 0.5 K, the interactions between He and He in the superfluid Hquid phase becomes very small, and in many ways the He component behaves as a mechanical vacuum to the diffusional motion of He atoms. If He is added to the normal phase or removed from the superfluid phase, equiHbrium is restored by the transfer of He from a concentrated phase to a dilute phase. The effective He density is thereby decreased producing a heat-absorbing expansion analogous to the evaporation of He. The He density in the superfluid phase, and hence its mass-transfer rate, is much greater than that in He vapor at these low temperatures. Thus, the pseudoevaporative cooling effect can be sustained at practical rates down to very low temperatures in heHum-dilution refrigerators (72). [Pg.9]

Ordinary diffusion involves molecular mixing caused by the random motion of molecules. It is much more pronounced in gases and Hquids than in soHds. The effects of diffusion in fluids are also greatly affected by convection or turbulence. These phenomena are involved in mass-transfer processes, and therefore in separation processes (see Mass transfer Separation systems synthesis). In chemical engineering, the term diffusional unit operations normally refers to the separation processes in which mass is transferred from one phase to another, often across a fluid interface, and in which diffusion is considered to be the rate-controlling mechanism. Thus, the standard unit operations such as distillation (qv), drying (qv), and the sorption processes, as well as the less conventional separation processes, are usually classified under this heading (see Absorption Adsorption Adsorption, gas separation Adsorption, liquid separation). [Pg.75]

The basic operations in dust collection by any device are (1) separation of the gas-borne particles from the gas stream by deposition on a collecting surface (2) retention of the deposit on the surface and (3) removal of the deposit from the surface for recovery or disposal. The separation step requires (1) application of a force that produces a differential motion of a particle relative to the gas and (2) a gas retention time sufficient for the particle to migrate to the coUecting surface. The principal mechanisms of aerosol deposition that are apphed in dust collectors are (1) gravitational deposition, (2) flow-line interception, (3) inertial deposition, (4) diffusional deposition, and (5) electrostatic deposition. Thermal deposition is only a minor factor in practical dust-collectiou equipment because the thermophoretic force is small. Table 17-2 lists these six mechanisms and presents the characteristic... [Pg.1582]

As with Newtonian molecular dynamics, a number of different algorithms have been developed to calculate the diffusional trajectories. An efficient algorithm for solving the Brownian equation of motion was introduced by Ermak and McCammon [21]. A detailed survey of this and other algorithms as well as their application can be found in Ref. 2. [Pg.57]

For an adsorbate which is homogeneous within the patches of reconstructed and unreconstructed surface only the diffusional exchange of mass between these two types contributes to the time evolution. The equations of motion read... [Pg.475]

Let us now turn our attention to liquid water. Just as in ice I, molecular motions may be divided into rapid vibrations and slower diffusional motions. In the liquid, however, vibrations are not centred on essentially fixed lattice sites, but around temporary equilibrium positions that are themselves subject to movement. Water at any instant may thus be considered to have an I-structure. An instant later, this I-structure will be modified as a result of vibrations, but not by any additional displacements of the molecules. This, together with the first I-structure, is one of the structures that may be averaged to allow for vibration, thereby contributing to the V-structure. Lastly, if we consider the structure around an individual water molecule over a long time-period, and realize that there is always some order in the arrangement of adjacent molecules in a liquid even over a reasonable duration, then we have the diffusionally averaged D-structure. [Pg.37]

Kramers HA. 1940. Brownian motion in a field of force and the diffusional model of chemical reactions. Physica7 284-304. [Pg.55]

Marshall WF, Straight A, Marko JF, Swedlow J, Dernburg A, Belmont A, Murray AW, Agard DA, Sedat JW (1997) Interphase chromosomes undergo constrained diffusional motion in living cells. Cutr Biol 7 930-939... [Pg.26]

First, we must recognize that all ionic diffusional changes involve both ends of the salt bridge. Secondly, because the electrolyte in the bridge is gel-like (usually), ionic motion into, through arul from the bridge is quite slow because the viscous nature of the gel will minimize ionic diffusion. Retardation of the ionic motion will itself enable the system to settle quickly to a reproducible state. As all ionic motion is slowed, the differences in diffusion rate are themselves minimized. [Pg.80]

The thermal motion of molecules of a given substance in a solvent medium causes dispersion and migration. If dispersion takes place by intermolecular forces acting within a gas, fluid, or solid, molecular diffusion takes place. In a turbulent medium, the migration of matter within it is defined as turbulent diffusion or eddy diffusion. Diffusional flux J is the product of linear concentration gradient dCldX multiphed by a proportionality factor generally defined as diffusion coefficient (D) (see section 4.11) ... [Pg.608]

For an aqueous suspension of crystals to grow, the solute must (a) make its way to the surface by diffusion, (b) undergo desolvation, and (c) insert itself into the lattice structure. The first step involves establishment of a stationary diffusional concentration field around each particle. The elementary step for diffusion has an activation energy (AG ), and a molecule or ion changes its position with a frequency of (kBT/h)exp[-AGl,/kBT]. Einstein s treatment of Brownian motion indicates that a displacement of A will occur within a time t if A equals the square root of 2Dt. Thus, the rate constant for change of position equal to one ionic diameter d will be... [Pg.198]

The haphazard rotational motions of molecules or one or more segments of a molecule. This diffusional process strongly influences the mutual orientation of molecules (particularly large ones) as they encounter each other and proceed to form complexes. Rotational diffusion can be characterized by one or more relaxation times, t, describing the motion of a molecule or segment of volume, V, in a medium of viscosity, 17, as shown in the following equation ... [Pg.623]

A probabilistic kinetic model describing the rapid coagulation or aggregation of small spheres that make contact with each other as a consequence of Brownian motion. Smoluchowski recognized that the likelihood of a particle (radius = ri) hitting another particle (radius = T2 concentration = C2) within a time interval (dt) equals the diffusional flux (dC2ldp)p=R into a sphere of radius i i2, equal to (ri + r2). The effective diffusion coefficient Di2 was taken to be the sum of the diffusion coefficients... [Pg.641]

In this book we limit our treatment to dilute solutions so that the diffusional mass flux is small. In this way the existence of diffusion does not appreciably alter the fluid motion, so that the velocity and stress boundary conditions can be considered to be unaltered. Treatments of diffusion with high mass fluxes appear elsewhere (B3, S3, S4). [Pg.10]


See other pages where Motion, diffusional is mentioned: [Pg.63]    [Pg.323]    [Pg.141]    [Pg.1439]    [Pg.57]    [Pg.896]    [Pg.393]    [Pg.220]    [Pg.37]    [Pg.443]    [Pg.536]    [Pg.662]    [Pg.287]    [Pg.300]    [Pg.276]    [Pg.342]    [Pg.458]    [Pg.14]    [Pg.113]    [Pg.67]    [Pg.84]    [Pg.275]    [Pg.202]    [Pg.356]    [Pg.366]    [Pg.53]    [Pg.623]    [Pg.45]    [Pg.46]    [Pg.182]   
See also in sourсe #XX -- [ Pg.122 ]




SEARCH



Diffusionism

Free diffusional motion

Translational diffusional motions

© 2024 chempedia.info