Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Motility, cellular

Alpha helices are sufficiently versatile to produce many very different classes of structures. In membrane-bound proteins, the regions inside the membranes are frequently a helices whose surfaces are covered by hydrophobic side chains suitable for the hydrophobic environment inside the membranes. Membrane-bound proteins are described in Chapter 12. Alpha helices are also frequently used to produce structural and motile proteins with various different properties and functions. These can be typical fibrous proteins such as keratin, which is present in skin, hair, and feathers, or parts of the cellular machinery such as fibrinogen or the muscle proteins myosin and dystrophin. These a-helical proteins will be discussed in Chapter 14. [Pg.35]

The CaR regulates numerous biological processes, including the expression of various genes (e.g., PTH) the secretion of hormones (PTH and calcitonin), cytokines (MCP-1), and calcium (e.g., into breast milk) the activities of channels (potassium channels) and transporters (aquaporin-2) cellular shape, motility (of macrophages), and migration cellular adhesion (of hematopoietic stem cells) and cellular proliferation (of colonocytes), differentiation (of keratinocytes), and apoptosis (of H-500 ley dig cancer cells) [3]. [Pg.303]

Phosphorylation is the reversible process of introducing a phosphate group onto a protein. Phosphorylation occurs on the hydroxyamino acids serine and threonine or on tyrosine residues targeted by Ser/Thr kinases and tyrosine kinases respectively. Dephosphorylation is catalyzed by phosphatases. Phosphorylation is a key mechanism for rapid posttranslational modulation of protein function. It is widely exploited in cellular processes to control various aspects of cell signaling, cell proliferation, cell differentiation, cell survival, cell metabolism, cell motility, and gene transcription. [Pg.976]

More recent analysis of tissue specific gene deletions showed that the Cav1.2 channel is involved in a wide variety of function including hippocampal learning, insulin secretion, intestine and bladder motility. Further analysis will be required to unravel the functional significance of voltage-dependent calcium channels for specific cellular functions. [Pg.1304]

O Neill, C., Riddle, P., Rosengurt, E. (1985). Stimulating the proliferation of quiescent 3T3 fibroblasts by peptide growth factors or by agents which elevate cellular cyclic AMP level has opposite effects on motility. Expt. Cell Res. 156.65-78. [Pg.105]

An assay that produces multiple biological readouts. Most commonly used in relation to the mathematical analysis of an image acquired using an automated microscope whereby analysis algorithms quantify cellular parameters (e.g., number, motility, neurite outgrowth, size, shape) and subcellular events (e.g., receptor internalization, protein translocation, protein expression nuclei shape). [Pg.76]

The cellular cytoskeleton, primarily composed of microfilaments, microtubules, and intermediate filaments, provides structural support and enables cell motility. The cytoskeleton is composed of biological polymers and is not static. Rather, it is capable of dynamic reassembly in less than a minute [136], The cytoskeleton is built from three key components, the actin filaments, the intermediate filaments, and the microtubules. The filaments are primarily responsible for maintaining cell shape, whereas the microtubules can be seen as the load-bearing elements that prevent a cell from collapsing [136], The cytoskeleton protects cellular structures and connects mechanotransductive pathways. Along with mechanical support, the cytoskeleton plays a critical role in many biological processes. [Pg.297]

Inspiration for development of dynamic supramolecular polymers comes from living systems, where enzyme-controlled formation and degradation of collagen fibrils, actin filaments and microtubules underlie vital cellular functions such as motility, differentiation, division, etc. (Fig. 1). [Pg.129]


See other pages where Motility, cellular is mentioned: [Pg.82]    [Pg.82]    [Pg.39]    [Pg.538]    [Pg.331]    [Pg.414]    [Pg.69]    [Pg.78]    [Pg.371]    [Pg.192]    [Pg.237]    [Pg.122]    [Pg.282]    [Pg.324]    [Pg.369]    [Pg.31]    [Pg.1003]    [Pg.1003]    [Pg.39]    [Pg.25]    [Pg.108]    [Pg.495]    [Pg.41]    [Pg.206]    [Pg.278]    [Pg.237]    [Pg.76]    [Pg.136]    [Pg.265]    [Pg.297]    [Pg.90]    [Pg.156]    [Pg.238]    [Pg.235]    [Pg.171]    [Pg.123]    [Pg.157]    [Pg.270]    [Pg.300]    [Pg.254]    [Pg.254]    [Pg.369]   


SEARCH



Motility

© 2024 chempedia.info