Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mooney-Rivlin strain-dependent

In TPE, the hard domains can act both as filler and intermolecular tie points thus, the toughness results from the inhibition of catastrophic failure from slow crack growth. Hard domains are effective fillers above a volume fraction of 0.2 and a size <100 nm [200]. The fracture energy of TPE is characteristic of the materials and independent of the test methods as observed for rubbers. It is, however, not a single-valued property and depends on the rate of tearing and test temperature [201]. The stress-strain properties of most TPEs have been described by the empirical Mooney-Rivlin equation... [Pg.137]

Figure 8. Mooney-Rivlin plots for strain dependent measurements at 298 K. Key A, PDMS-BI , PDMS-B2 X, PDMS-B3 O, PDMS-B5 , PDMS-B6 , PDMS-B7 V, PDMS-B8 A, PDMS-B9 PDMS-B10. Figure 8. Mooney-Rivlin plots for strain dependent measurements at 298 K. Key A, PDMS-BI , PDMS-B2 X, PDMS-B3 O, PDMS-B5 , PDMS-B6 , PDMS-B7 V, PDMS-B8 A, PDMS-B9 PDMS-B10.
Mooney-Rivlin constants obtained from strain dependent measurements at 298 K... [Pg.325]

The results of stress-strain measurements can be summarized as follows (1) the reduced stress S (A- A ) (Ais the extension ratio) is practically independent of strain so that the Mooney-Rivlin constant C2 is practically zero for dry as well as swollen samples (C2/C1=0 0.05) (2) the values of G are practically the same whether obtained on dry or swollen samples (3) assuming that Gee=0, the data are compatible with the chemical contribution and A 1 (4) the difference between the phantom network dependence with the value of A given by Eq.(4) and the experimental moduli fits well the theoretical dependence of G e in Eq.(2) or (3). The proportionality constant in G for series of networks with s equal to 0, 0.2, 0.33, and 0. Ewas practically the same -(8.2, 6.3, 8.8, and 8.5)x10-4 mol/cm with the average value 7.95x10 mol/cm. Results (1) and (2) suggest that phantom network behavior has been reached, but the result(3) is contrary to that. Either the constraints do survive also in the swollen and stressed states, or we have to consider an extra contribution due to the incrossability of "phantom" chains. The latter explanation is somewhat supported by the constancy of in Eq.(2) for a series of samples of different composition. [Pg.408]

It is very important to stress that the decrease of the internal energy contribution with increasing extension ratio is due to a decrease of the intermolecular interaction with deformation, since the intramolecular contribution is independent of the deformation in full accord with the statistical theory. At very high strains, the /.-dependent part of fu/f approaches a limiting value of —0.68 for the Mooney-Rivlin and —0.07 for the Valanis-Landel materials. [Pg.49]

Petrie and Ito (84) used numerical methods to analyze the dynamic deformation of axisymmetric cylindrical HDPE parisons and estimate final thickness. One of the early and important contributions to parison inflation simulation came from DeLorenzi et al. (85-89), who studied thermoforming and isothermal and nonisothermal parison inflation with both two- and three-dimensional formulation, using FEM with a hyperelastic, solidlike constitutive model. Hyperelastic constitutive models (i.e., models that account for the strains that go beyond the linear elastic into the nonlinear elastic region) were also used, among others, by Charrier (90) and by Marckmann et al. (91), who developed a three-dimensional dynamic FEM procedure using a nonlinear hyperelastic Mooney-Rivlin membrane, and who also used a viscoelastic model (92). However, as was pointed out by Laroche et al. (93), hyperelastic constitutive equations do not allow for time dependence and strain-rate dependence. Thus, their assumption of quasi-static equilibrium during parison inflation, and overpredicts stresses because they cannot account for stress relaxation furthermore, the solutions are prone to numerical instabilities. Hyperelastic models like viscoplastic models do allow for strain hardening, however, which is a very important element of the actual inflation process. [Pg.854]

Fig. 6. Dependence of strain, r, on relative deformation, X, in Mooney-Rivlin coordinates (f = x/r0, X )... Fig. 6. Dependence of strain, r, on relative deformation, X, in Mooney-Rivlin coordinates (f = x/r0, X )...
The deformation dependence of the confining potential [Eq. (7.62)] results in a non-classical stress strain dependence of the non-affine tube model. The prediction of this model for the stress-elongation relation in tension is qualitatively similar to the Mooney-Rivlin equation [Eg. (7.59)]... [Pg.273]

The preceding equations provided a reasonable foundation for predicting DE behavior. Indeed the assumption that DEs behave electronically as variable parallel plate capacitors still holds however, the assumptions of small strains and linear elasticity limit the accuracy of this simple model. More advanced non-linear models have since been developed employing hyperelasticity models such as the Ogden model [144—147], Yeoh model [147, 148], Mooney-Rivlin model [145-146, 149, 150] and others (Fig. 1.11) [147, 151, 152]. Models taking into account the time-dependent viscoelastic nature of the elastomer films [148, 150, 151], the leakage current through the film [151], as well as mechanical hysteresis [153] have also been developed. [Pg.19]

Schematic stress-strain isotherms in elongation for a unimodal elastomer in the Mooney-Rivlin representation of modulus against reciprocal elongation. The isotherms are represented as the dependence of the reduced stress ([f ] = f /(a - on reciprocal elongation. (f = f/A, f = elastic force, A = undeformed area, a = elongation). The top three are for a crystallizable network curve A for a relatively low temperature, B for an increased temperature, and C for the introduction of a swelling diluent. Isotherm D is for an unswollen unimodal network that is inherently noncrystallizable. Schematic stress-strain isotherms in elongation for a unimodal elastomer in the Mooney-Rivlin representation of modulus against reciprocal elongation. The isotherms are represented as the dependence of the reduced stress ([f ] = f /(a - on reciprocal elongation. (f = f/A, f = elastic force, A = undeformed area, a = elongation). The top three are for a crystallizable network curve A for a relatively low temperature, B for an increased temperature, and C for the introduction of a swelling diluent. Isotherm D is for an unswollen unimodal network that is inherently noncrystallizable.
The strain measures for dry (unswollen) vulcanizates of a large number of natural rubbers, butadiene-styrene and butadiene-acrylonitrile copolymers, polydimethylsiloxanes, polymethylmethacrylates, polyethylacrylates and polybutadienes with different degrees of crosslinking and measured at various temperatures re confined within the shaded area in Fig. 1. These measures were determined from the stress as a function of extension at (or near) equilibrium, i.e. by applying Eq. (7). Therefore they only reproduce the equilibrium stress-strain relation for the crossllnked rubbers. In all cases the strain dependence of the tensile force (and hence of the tensile stress) was expressed in terms of the well-known Mooney-Rivlin equation, equating the equilibrium tensile stress to ... [Pg.428]

Finally, it is worth mentioning another approach used to describe nonlinear viscoelastic solids nonlinear differential viscoelasticity [49, 178, 179]. This theory has been successfully applied to model finite amplitude waves propagation [180-182]. It is the generalization to the three-dimensional nonlinear case of the rheological element composed by a dashpot in series with a spring. Thus in the simplest case, the stress depends upon the current values of strain and strain rate rally. In this sense, it can account for the nonlinear short-term response and the creep behavior, but it fails to reproduce the long-term material response (e.g., relaxation tests). The so-called Mooney-Rivlin viscoelastic material [183] and the incompressible version of the model proposed by Landau and Lifshitz [184] belraig to this class. [Pg.249]


See other pages where Mooney-Rivlin strain-dependent is mentioned: [Pg.311]    [Pg.78]    [Pg.86]    [Pg.93]    [Pg.45]    [Pg.67]    [Pg.42]    [Pg.154]    [Pg.45]    [Pg.70]   


SEARCH



Mooney

Mooney-Rivlin

Strain dependence

© 2024 chempedia.info