Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Monomers, ceiling temperatures

The thermodynamic ceiling temperature (26) T for a polymerization is computed by dividing the AfTp by the standard entropy of polymerization, The T is the temperature at which monomer and polymer are in equHibrium in their standard states at 25°C (298.15 K) and 101.3... [Pg.431]

The stoichiometric reaction of y -diisopropenylbenzene [3748-13-8] with two moles of j -butyUithium in the presence of triethylamine has been reported to produce a useful, hydrocarbon-soluble dilithium initiator because of the low ceiling temperature of the monomer (78,79) which is analogous in stmcture to a-methylstyrene however, other studies suggest that oligomerization occurs to form initiators with functionahties higher than two (80). [Pg.239]

Since amines initiate cyanoacrylate polymerization, the monomer cannot be isolated directly, because a polymer is generated immediately after formation of the monomer. An acid is then added to the polymer, and heat (140-180°C) is applied to the reaction mixture. Because of the relatively low ceiling temperature of the polymer, the pure monomer can be isolated, in greater than 80% yield, by the thermal reversion of the polymer back to the free monomer [4,5]. [Pg.848]

As has been mentioned earlier, polycyanoacrylates possess a relatively low ceiling temperature, because the polymer will thermally revert back to monomer by an... [Pg.859]

With most common monomers, the rate of the reverse reaction (depropagation) is negligible at typical polymerization temperatures. However, monomers with alkyl groups in the a-position have lower ceiling temperatures than monosubstituted monomers (Table 4.10). For MMA at temperatures <100 °C, the value of is <0.01 (Figure 4.4). AMS has a ceiling temperature of <30 °C and is not readily polymerizable by radical methods. This monomer can, however, be copolymerized successfully (Section 7.3.1.4). [Pg.214]

There have heen many studies on the polymerizability of a-substituted acrylic monomers.3jU35 33S It is established that the ceiling temperature for a-alkoxyacrylates decreases with the size of the alkoxy group. 35 However, it is of interest that polymerizations of a-(alkoxymethyl)acrylates (67)3 15 and a-(acyloxymethyl)acrylates (68)and captodative substituted monomers (69, 70) 39 appear to have much higher ceiling temperatures than the corresponding a-alkylacrylates methyl ethacrylate, MEA). For example, methyl a-... [Pg.216]

Propagation reactions in radical polymerization and copolymerization arc generally highly exothermic and can be assumed to be irreversible. Exceptions to this general rule arc those involving monomers with low ceiling temperatures (Section 4.5.1). The thermodynamics of copolymerization has been reviewed by Sawada.85... [Pg.353]

Copolymerizations of other monomers may also be subject to similar effects given sufficiently high reaction temperatures (at or near their ceiling temperatures - Section 4.5.1). The depropagation of methacrylate esters becomes measurable at temperatures >100 °C (Section 4.5.1).96 O Driseoll and Gasparro86 have reported on the copolymerization of MMA with S at 250 °C. [Pg.354]

Thermal Effects in Addition Polymerizations. Table 13.2 shows the heats of reaction (per mole of monomer reacted) and nominal values of the adiabatic temperature rise for complete polymerization. The point made by Table 13.2 is clear even though the calculated values for T dia should not be taken literally for the vinyl addition polymers. All of these pol5Tners have ceiling temperatures where polymerization stops. Some, like polyvinyl chloride, will dramatically decompose, but most will approach equilibrium between monomer and low-molecular-weight polymer. A controlled polymerization yielding high-molecular-weight pol)mier requires substantial removal of heat or operation at low conversions. Both approaches are used industrially. [Pg.468]

In the copolymerization of isopropenylferrocene with a-methyl-styrene at 0°C, using varying molar ratios of isopropenylferrocene and a-methylstyrene, traces of polymer formation were obtained only at a 30/70 ratio of the two monomers, as shown in the data in Table III. Because a-methylstyrene has a much lower ceiling temperature than styrene, we also decided to use styrene as a comonomer under conditions similar to those employed with a-methylstyrene. The reaction temperature for the copolymerization with a-methylstyrene was 20°C. [Pg.455]

The heat of reaction for vinyl polymers affects the thermal stability of the polymer during extrusion, and the thermal stability is related to the ceiling temperature. The ceiling temperature is the temperature where the polymerization reaction equilibrium is shifted so that the monomer will not polymerize, or if kept at this temperature all the polymer will be converted back to monomer. From thermodynamics the equilibrium constant for any reaction is a function of the heat of reaction and the entropy of the reaction. For PS resin, the exothermic heat of reaction for polymerization is 70 kj/gmol, and the ceiling temperature is 310 °C. Ceiling temperatures for select polymers are shown in Table 2.5. [Pg.50]

Monomer Ring size Monomer polymer states Enthalpy of polymerization, AHp (kJ/mol) Entropy of polymerization, ASp (J/mol K) Monomer concentration at equilibrium, [M]eq (mol4-) Ceiling temperature, (°K)... [Pg.178]

Interestingly, it should not be assumed that a polymer will be useless above its ceiling temperature. A dead polymer that has been removed from the reaction media will be stable and will not depolymerize unless an active end is produced by bond cleavage of an end group or at some point along the polymer chain. When such an active site is produced by thermal, chemical, photolytic, or other means, depolymerization will follow until the monomer concentration becomes equal to [M]c for the particular temperature. The thermal behavior of many polymers, however, is much more complex. Degradative reactions other than depolymerization will often occur at temperatures below the ceiling temperature. [Pg.281]

Increased pressure increases the ceiling temperature and decreases the equilibrium monomer concentration according to... [Pg.296]

Progress in the polymerization of the carbonyl linkage did not result until there was an understanding of the effect of ceiling temperature (Tc) on polymerization (Sec. 3-9c). With the major exception of formaldehyde and one or two other aldehydes, carbonyl monomers have low ceiling temperatures (Table 5-13). Most carbonyl monomers have ceiling temperatures at or appreciably below room temperature. The low Tc values for carbonyl polymerizations are due primarily to the AH factor. The entropy of polymerization of the carbonyl double bond in aldehydes is approximately the same as that for the alkene double bond. The enthalpy of polymerization for the carbonyl double bond, however, is appreciably lower. Thus AH for acetaldehyde polymerization is only about 29 kJ mol-1 compared to the usual 80-90 kJ mol-1 for polymerization of the carbon-carbon double bond (Table 3-14) [Hashimoto et al., 1076, 1978],... [Pg.444]


See other pages where Monomers, ceiling temperatures is mentioned: [Pg.49]    [Pg.49]    [Pg.362]    [Pg.507]    [Pg.70]    [Pg.74]    [Pg.82]    [Pg.196]    [Pg.397]    [Pg.602]    [Pg.635]    [Pg.916]    [Pg.168]    [Pg.400]    [Pg.916]    [Pg.72]    [Pg.14]    [Pg.428]    [Pg.565]    [Pg.69]    [Pg.50]    [Pg.51]    [Pg.51]    [Pg.144]    [Pg.144]    [Pg.10]    [Pg.95]    [Pg.500]    [Pg.178]    [Pg.178]    [Pg.279]    [Pg.280]    [Pg.281]    [Pg.281]    [Pg.445]    [Pg.447]   
See also in sourсe #XX -- [ Pg.476 ]




SEARCH



Ceilings

© 2024 chempedia.info