Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Monomer structures polymer brushes

The chain architecture and chemical structure could be modified by SCVCP leading to a facile, one-pot synthesis of surface-grafted branched polymers. The copolymerization gave an intermediate surface topography and film thickness between the polymer protrusions obtained from SCVP of an AB inimer and the polymer brushes obtained by ATRP of a conventional monomer. The difference in the Br content at the surface between hyperbranched, branched, and linear polymers was confirmed by XPS, suggesting the feasibility to control the surface chemical functionality. The principal result of the works is a demonstration of utility of the surface-initiated SCVP via ATRP to prepare surface-grafted hyperbranched and branched polymers with characteristic architecture and topography. [Pg.28]

There is a host of other intriguing phenomena associated with the structure and dynamics of stars, which we only list here. The inhomogeneous monomer density distribution in Fig. 2 is responsible for temperature and/or solvency variation in analogy to polymer brushes attached on a flat solid surface [198]. In fact, multiarm star solutions display a reversible thermoresponsive vitrification (see also Sect. 5) which, in contrast to polymer solutions, occurs upon heating rather than on cooling [199]. Another effect is the organization of multiarm stars in filaments induced by weak laser light due to action of electrostrictive forces [200]. This effect was recently attributed [201] to local concentration fluctuations which provide localized-intensity dependent refractive index variations. Hence, the structure factor speciflc to the particular material plays a crucial role in the pattern formation. [Pg.25]

Recently, we explored strategies for binding spiropyran moieties to structured brushes grafted from ETFE and Teflon (PTFE) surfaces in order to obtain light-sensitive structured polymer surfaces [18]. We focused on post-polymerization modification of grafted brush structures because this strategy increases the flexibility with respect to the optimization of the concentration of spiropyran moieties in the brushes. Moreover, the tedious synthesis and purification steps of spiropyran—monomer conjugates are circumvented. [Pg.69]

The first theories that implemented a proper balance of intramolecular interactions and conformational elasticity of the branches were developed by Daoud and Cotton [21] and by Zhulina and Birshtein [22-24]. These theories use scaling concepts (the blob model), originally developed by de Gennes and Alexander to describe the structure of semidilute polymer solutions [64] and planar polymer brushes [65, 66]. Here, the monomer-monomer interactions were incorporated on the level of binary or ternary contacts (corresponding to good and theta-solvent conditions, respectively), and both dilute and semidilute solutions of star polymers were considered. Depending on the solvent quality and the intrinsic stiffness of the arms, the branches of a star could be locally swollen, or exhibit Gaussian statistics [22-24]. [Pg.7]

Some polymers are linear—a long chain of connected monomers. PE, PVC, Nylon 66, and polymethyl methacrylate (PMMA) are some linear commercial examples found in this book. Branched polymers can be visualized as a linear polymer with side chains of the same polymer attached to the main chain. While the branches may in turn be branched, they do not connect to another polymer chain. The ends of the branches are not connected to anything. Special types of branched polymers include star polymers, comb polymers, brush polymers, dendronized polymers [1], ladders, and dendrimers. A cross-linked polymer, sometimes called a network polymer, is one in which different chains are connected. Essentially the branches are connected to different polymer chains on the ends. These three polymer structures are shown in Figure 1.3. [Pg.3]

A number of well-defined macromonomers differing in the types of the monomer and the end functionality have been made available in these two decades. Their polymerization and copolymerization have provided a relatively easy access to a variety of branched polymers and copolymers, including comb-, star-, brush-, and graft-structures. Progress will no doubt continue to disclose further different types of macromonomers and branched polymers. [Pg.173]


See other pages where Monomer structures polymer brushes is mentioned: [Pg.35]    [Pg.430]    [Pg.152]    [Pg.78]    [Pg.5]    [Pg.6]    [Pg.133]    [Pg.406]    [Pg.105]    [Pg.280]    [Pg.173]    [Pg.184]    [Pg.208]    [Pg.267]    [Pg.716]    [Pg.29]    [Pg.153]    [Pg.122]    [Pg.288]    [Pg.53]    [Pg.54]    [Pg.69]    [Pg.118]    [Pg.119]    [Pg.259]    [Pg.278]    [Pg.282]    [Pg.301]    [Pg.9]    [Pg.671]    [Pg.592]    [Pg.485]    [Pg.145]    [Pg.150]    [Pg.54]    [Pg.154]    [Pg.50]    [Pg.141]    [Pg.123]    [Pg.39]    [Pg.150]    [Pg.180]    [Pg.133]   
See also in sourсe #XX -- [ Pg.363 , Pg.364 , Pg.365 , Pg.366 , Pg.367 , Pg.368 , Pg.369 , Pg.370 , Pg.371 , Pg.372 ]




SEARCH



Brush structure

Monomer structure

Polymer brushes

Polymers monomers

© 2024 chempedia.info