Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Monomer isotactic

In summary, syndioselective initiators exaggerate the inherent tendency toward syndiotactic placement by accentuating the methyl-methyl repulsive interactions between the propagating chain end and incoming monomer. Isotactic placement occurs against this inherent tendency when chiral active sites force monomer to coordinate with the same enantioface at each propagation step. [Pg.654]

Catalyst Monomer Isotactic dyads (%) Syndiotactic dyads (%) Reference... [Pg.586]

When the counterion is strongly coordinating with the active center of polymer s terminal unit and the incoming monomer, isotactic polymer wiU be more favored. This task is hard to achieve when nonpolar monomers are incorporated. Polarity is attained when cationic or anionic polymerization mechanism is adopted. It is also useful to employ nonpolar solvent at low-temperamre conditions. Polar solvents would disrupt coordination and consequentiy lose stereochemical control leading to syndiotactic or atactic polymer. [Pg.60]

In both cases, propagation requires the facile decomplexation of the polymer chain carboxylate and its replacement by that of the monomer. Isotactic PMMA results when a racemic bridged bis(indenyl) (227) or amidocyclopenta-dienyl half-sandwich complex is employed (228) enantiomorphic site control indicates that path (eq. 31) dominates in that case. [Pg.4601]

When polymerization is performed using monosubstituted ethylenes as monomers, isotactic, syndiotactic, or atactic polymers can be formed, depending on the catalyst used. [Pg.1291]

In polymers made of dis-symmetric monomers, such as, for example, poly(propylene), the stmcture may be irregular and constitutional isomerism can occur as shown in figure C2.1.1(a ). The succession of the relative configurations of the asymmetric centres can also vary between stretches of the chain. Configuration isomerism is characterized by the succession of dyads which are named either meso, if the two asymmetric centres have the same relative configurations, or racemo if the configurations differ (figure C2.1.1(b )). A polymer is called isotactic if it contains only one type of dyad and syndiotactic if the dyad sequence strictly alternates between the meso and racemo fonns. [Pg.2513]

The desired form in homopolymers is the isotactic arrangement (at least 93% is required to give the desired properties). Copolymers have a random arrangement. In block copolymers a secondary reactor is used where active polymer chains can further polymerize to produce segments that use ethylene monomer. [Pg.1021]

Tacticity of products. Most solid catalysts produce isotactic products. This is probably because of the highly orienting effect of the solid surface, as noted in item (1). The preferred isotactic configuration produced at these surfaces is largely governed by steric and electrostatic interactions between the monomer and the ligands of the transition metal. Syndiotacticity is mostly produced by soluble catalysts. Syndiotactic polymerizations are carried out at low temperatures, and even the catalyst must be prepared at low temperatures otherwise specificity is lost. With polar monomers syndiotacticity is also promoted by polar reaction media. Apparently the polar solvent molecules compete with monomer for coordination sites, and thus indicate more loosely coordinated reactive species. [Pg.490]

Fig. 7.13, this shifts the vacancy—represented by the square-in the coordination sphere of the titanium to a different site. Syndiotactic regulation occurs if the next addition takes place via this newly created vacancy. In this case the monomer and the growing chain occupy alternating coordination sites in successive steps. For the more common isotactic growth the polymer chain must migrate back to its original position. [Pg.493]

Any of the four monomer residues can be arranged in a polymer chain in either head-to-head, head-to-tail, or tail-to-tail configurations. Each of the two head-to-tail vinyl forms can exist as syndiotactic or isotactic stmctures because of the presence of an asymmetric carbon atom (marked with an asterisk) in the monomer unit. Of course, the random mix of syndiotactic and isotactic, ie, atactic stmctures also exists. Of these possible stmctures, only... [Pg.466]

The physical properties of any polyisoprene depend not only on the microstmctural features but also on macro features such as molecular weight, crystallinity, linearity or branching of the polymer chains, and degree of cross-linking. For a polymer to be capable of crystallization, it must have long sequences where the stmcture is completely stereoregular. These stereoregular sequences must be linear stmctures composed exclusively of 1,4-, 1,2-, or 3,4-isoprene units. If the units are 1,4- then they must be either all cis or all trans. If 1,2- or 3,4- units are involved, they must be either syndiotactic or isotactic. In all cases, the monomer units must be linked in the head-to-tail manner (85). [Pg.467]

Crystallinity of polypropylene is usually determined by x-ray diffraction (21). Isotactic polymer consists of heHcal molecules, with three monomer units pet chain unit, resulting in a spacing between units of identical conformation of 0.65 nm (Fig. 2a). These molecules interact with others, or different... [Pg.407]

Polymerization Processes. Isotactic PB and PMP are produced commercially in slurry processes in Hquid monomers or monomer mixtures (optionally diluted with light inert hydrocarbons) at 50—70°C. The first commercial process for PB production used a highly isospecific... [Pg.430]

Stereoregular Polymerization. Chemists at GAF Corporation were first to suggest that stereoregularity or the lack thereof is responsible for both nontacky and crystalline or tacky and amorphous polymers generated from IBVE with BF2 0(C2H )2, depending on the reaction conditions (22,23). In addition, it was shown that the crystalline polymer is actually isotactic (24). Subsequentiy, the reaction conditions necessary to form such polymers have not only been demonstrated, but the stereoregular polymerization has been extended to other monomers, such as methyl vinyl ether (25,26). [Pg.516]

For the 1,2- and 3,4-addition, a chiral carbon (marked by an asterisk) is formed which has an R or 3 configuration, but there is no net optical activity, because equal amounts of the R and S configurations are formed. The R and S configurations along the polymer chains lead to diastereomeric isomers called isotactic, syndiotactic, and atactic. In isotactic polyisoprene all monomer units have the same configuration as illustrated for isotactic... [Pg.3]

Polypropylenes produced by metallocene catalysis became available in the late 1990s. One such process adopts a standard gas phase process using a metallocene catalyst such as rac.-dimethylsilyleneto (2-methyl-l-benz(e)indenyl)zirconium dichloride in conjunction with methylaluminoxane (MAO) as cocatalyst. The exact choice of catalyst determines the direction by which the monomer approaches and attaches itself to the growing chain. Thus whereas the isotactic material is normally preferred, it is also possible to select catalysts which yield syndiotactic material. Yet another form is the so-called hemi-isotactic polypropylene in which an isotactic unit alternates with a random configuration. [Pg.251]

The commercial poly-(4-methypent-1-ene) (P4MP1) is an essentially isotactic material which shows 65% crystallinity when annealed but under more normal conditions about 40%. For reasons given later the material is believed to be a copolymer. In the crystalline state P4MP1 molecules take up a helical disposition and in order to accommodate the side chains require seven monomer units per two turns of the helix (c.f. three monomers per turn with polypropylene and polybut-I-ene). Because of the space required for this arrangement the density of the crystalline zone is slightly less than that of the amorphous zone at room temperature. [Pg.270]

As with polybut-l-ene and many other vinyl monomers that contain an asymmetric carbon, isotactic, syndiotactic and atactic stmctures may be drawn. Using co-ordination catalysts such as mixtures of cobalt chlorides, aluminium alkyls, pyridine and water high-1,2 (high vinyl) polymers may be obtained. One product marketed by the Japan Synthetic Rubber Company (JSR 1,2 PBD) is 91% 1,2, and 51-66% of the 1,2 units are in the syndiotactic state. The molecular mass is said to be several hundred thousand and the ratio MJM is in the range 1.7-2.6. [Pg.307]

In the crystalline region isotactic polystyrene molecules take a helical form with three monomer residues per turn and an identity period of 6.65 A. One hundred percent crystalline polymer has a density of 1.12 compared with 1.05 for amorphous polymer and is also translucent. The melting point of the polymer is as high as 230°C. Below the glass transition temperature of 97°C the polymer is rather brittle. [Pg.454]

Examine three different strands ofpolypropylene. For each strand, assign R/S stereochemistry to each stereocenter. (All three strands have as their terminal monomer perfluoropropane in order to facilitate assignment of stereochemistry.) Which of the three strands corresponds to atactic polypropylene, isotactic polypropylene and syndiotactic polypropylene ... [Pg.252]

Brosse et al. [41] modified isotactic polypropylene and other polyolefins by a cold plasma. In isotactic polypropylene, plasma treatment results in a polypropylene crystallization of paracrystalline or smectic form into a a-crystalline form. Further, the active films are susceptible to react with monomers in a postgrafting reaction. [Pg.527]

Polystyrene (PS) is the fourth big-volume thermoplastic. Styrene can be polymerized alone or copolymerized with other monomers. It can be polymerized by free radical initiators or using coordination catalysts. Recent work using group 4 metallocene combined with methylalumi-noxane produce stereoregular polymer. When homogeneous titanium catalyst is used, the polymer was predominantly syndiotactic. The heterogeneous titanium catalyst gave predominantly the isotactic. Copolymers with butadiene in a ratio of approximately 1 3 produces SBR, the most important synthetic rubber. [Pg.334]


See other pages where Monomer isotactic is mentioned: [Pg.389]    [Pg.382]    [Pg.427]    [Pg.33]    [Pg.36]    [Pg.389]    [Pg.382]    [Pg.427]    [Pg.33]    [Pg.36]    [Pg.540]    [Pg.170]    [Pg.269]    [Pg.407]    [Pg.411]    [Pg.413]    [Pg.414]    [Pg.349]    [Pg.432]    [Pg.438]    [Pg.513]    [Pg.500]    [Pg.231]    [Pg.8]    [Pg.251]    [Pg.716]    [Pg.237]    [Pg.238]    [Pg.418]    [Pg.163]    [Pg.331]    [Pg.1209]   
See also in sourсe #XX -- [ Pg.382 ]




SEARCH



Isotactic structures propene monomers

Isotacticities

Isotacticity

© 2024 chempedia.info