Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Molten carbonate fuel cells introduced

Xu et al. (2006b) have successfully introduced Brinkman-Forchheimer-extended Darcy equation in order to solve the performance of molten carbonate fuel cell. As a verification of REV method, Poiseuille flow profiles in the porous media modifying LBM with... [Pg.98]

Chapters I to III introduce the reader to the general problems of fuel cells. The nature and role of the electrode material which acts as a solid electrocatalyst for a specific reaction is considered in chapters IV to VI. Mechanisms of the anodic oxidation of different fuels and of the reduction of molecular oxygen are discussed in chapters VII to XII for the low-temperature fuel cells and the strong influence of chemisorhed species or oxide layers on the electrode reaction is outlined. Processes in molten carbonate fuel cells and solid electrolyte fuel cells are covered in chapters XIII and XIV. The important properties of porous electrodes and structures and models used in the mathematical analysis of the operation of these electrodes are discussed in chapters XV and XVI. [Pg.175]

Two parts are treated one is the physical and chemical features of materials of molten carbonate fuel cells (MCFCs), and the other is performance analysis with a 100 cm class single cell. The characteristics of the fuel cell are determined by the electrolyte. The chemical and physical properties of the electrolyte with respect to gas solubility, ionic conductivity, dissolution of cathode material, corrosion, and electrolyte loss in the real cell are introduced. The reactirm characteristics of hydrogen oxidation in molten carbonates and materials for the anode of the MCFC are reviewed. The kinetics of the oxygen reduction reaction in the molten carbonates and state of the art of cathode materials are also described. Based on the reaction kinetics of electrodes, a performance analysis of MCFCs is introduced. The performance analysis has importance with respect to the increase in performance through material development and the extension of cell life by cell development. Conventional as well as relatively new analysis methods are introduced. [Pg.218]

In a conventional fuel cell system, a carbonaceous fuel is fed to a fuel processor where it is steam reformed to produce H2 (as well as other products, CO and CO2, for example), which is then introduced into the fuel cell and electrochemically oxidized. The internal reforming molten carbonate fuel cell, however, eliminates the need for a separate fuel processor for reforming... [Pg.183]

Dr. William W. Jacques further explored the carbon approach in 1896. His fuel cells had a carbon rod central anode in the electrolyte of molten potassium hydroxide. He made a fuel cell system of 100 cylindrical cells, which produced as much as 1500 W. Francis T. Bacon worked on fuel cells to produce alkaline systems that did not use noble metal catalysts in the 1930s. He developed and built a 6 kW alkaline hydrogen-oxygen system in 1959. In the same year, Dr. Harry Ihrig introduced... [Pg.222]


See other pages where Molten carbonate fuel cells introduced is mentioned: [Pg.2411]    [Pg.158]    [Pg.47]    [Pg.49]    [Pg.51]    [Pg.2166]    [Pg.47]    [Pg.2662]    [Pg.2641]    [Pg.2415]    [Pg.555]    [Pg.218]    [Pg.147]    [Pg.601]    [Pg.223]    [Pg.14]   
See also in sourсe #XX -- [ Pg.16 ]




SEARCH



Carbon fuel cells

Carbon fuels

Carbonate-fuel cell

Carbonization, fuel

Fuel cells molten carbonate

Fuel molten carbonate

Introduced

Molten carbonate

Molten carbonate cells

Molten fuel

© 2024 chempedia.info