Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Molecules potential well

Adsorbates can physisorb onto a surface into a shallow potential well, typically 0.25 eV or less [25]. In physisorption, or physical adsorption, the electronic structure of the system is barely perturbed by the interaction, and the physisorbed species are held onto a surface by weak van der Waals forces. This attractive force is due to charge fiuctuations in the surface and adsorbed molecules, such as mutually induced dipole moments. Because of the weak nature of this interaction, the equilibrium distance at which physisorbed molecules reside above a surface is relatively large, of the order of 3 A or so. Physisorbed species can be induced to remain adsorbed for a long period of time if the sample temperature is held sufficiently low. Thus, most studies of physisorption are carried out with the sample cooled by liquid nitrogen or helium. [Pg.294]

Chemisorption occurs when the attractive potential well is large so that upon adsorption a strong chemical bond to a surface is fonued. Chemisorption involves changes to both the molecule and surface electronic states. For example, when oxygen adsorbs onto a metal surface, a partially ionic bond is created as charge transfers from the substrate to the oxygen atom. Other chemisorbed species interact in a more covalent maimer by sharing electrons, but this still involves perturbations to the electronic system. [Pg.294]

Van der Waals complexes can be observed spectroscopically by a variety of different teclmiques, including microwave, infrared and ultraviolet/visible spectroscopy. Their existence is perhaps the simplest and most direct demonstration that there are attractive forces between stable molecules. Indeed the spectroscopic properties of Van der Waals complexes provide one of the most detailed sources of infonnation available on intennolecular forces, especially in the region around the potential minimum. The measured rotational constants of Van der Waals complexes provide infonnation on intennolecular distances and orientations, and the frequencies of bending and stretching vibrations provide infonnation on how easily the complex can be distorted from its equilibrium confonnation. In favourable cases, the whole of the potential well can be mapped out from spectroscopic data. [Pg.2439]

Hooke s law functional form is a reasonable approximation to the shape of the potential gy curve at the bottom of the potential well, at distances that correspond to bonding in md-state molecules. It is less accurate away from equilibrium (Figure 4.5). To model the se curve more accurately, cubic and higher terms can be included and the bond- ching potential can be written as follows ... [Pg.190]

The second class of atomic manipulations, the perpendicular processes, involves transfer of an adsorbate atom or molecule from the STM tip to the surface or vice versa. The tip is moved toward the surface until the adsorption potential wells on the tip and the surface coalesce, with the result that the adsorbate, which was previously bound either to the tip or the surface, may now be considered to be bound to both. For successful transfer, one of the adsorbate bonds (either with the tip or with the surface, depending on the desired direction of transfer) must be broken. The fate of the adsorbate depends on the nature of its interaction with the tip and the surface, and the materials of the tip and surface. Directional adatom transfer is possible with the apphcation of suitable junction biases. Also, thermally-activated field evaporation of positive or negative ions over the Schottky barrier formed by lowering the potential energy outside a conductor (either the surface or the tip) by the apphcation of an electric field is possible. FIectromigration, the migration of minority elements (ie, impurities, defects) through the bulk soHd under the influence of current flow, is another process by which an atom may be moved between the surface and the tip of an STM. [Pg.204]

In most cases surface reactions proceed according to well-established elementary steps, as schematized in Fig. 1. The first one comprises trapping, sticking, and adsorption. Gaseous reactants atoms and/or molecules are trapped by the potential well of the surface. This rather weak interaction is commonly considered as a physisorbed precursor state. Subsequently, species are promoted to the chemisorbed state, that is, a much stronger... [Pg.388]

Oonoeming the interaction i namics of H2 (D ) with N1 surfaces in the first place we have elaborated some rnix tant differences with regcurd to the surface orientation and also with regard bo the mass of the incident molecule. The Lennard-Jcnes potential of Fig. 1 has frequently been used to model the dissociative adsorption process al-thou it provides a descriptlm only in one dimension. Eiqierimental (26) and theoretical (27) studies on H, interaction with metal surfaces suggest that the d th of the molecular potential well (%2 )... [Pg.232]

Newport-. The way that spindles and microtubules are normally reoriented is by the stabilization of dynamic instability at the plus-end of the microtubule. So if microtubules were to embed in this apically localized complex, they would effectively be capped and this would reorient the spindle. One would expect that this would happen to the centriole prior to mitosis, so that the interphase microtubules would be stabilized at that location as well. Are you saying this doesn t happen If it doesn t happen, perhaps Cdc2 is necessary to activate this apical region for stabilizing plus ends, and this would explain why it rocks about. Are any of these molecules potential candidates for capping microtubules at the plus-end, for instance ... [Pg.156]

Microwave spectroscopy can determine the magnitude of V6 in S0 but not the sign, since the potential well is too small to localize even the m = 0 wavefunction. S, <— S0 absorption spectra of cold molecules with 1 cm"1 resolution can reveal the magnitude of V6 in S, a technique pioneered by Ito and coworkers.4 Pratt and coworkers7 and Miller and coworkers8 have made major contributions to the high-resolution optical spectroscopy of rotor-containing molecules. [Pg.166]

Since a biotinylated molecule potentially is able to interact with (strept)avidin at its biotin binding sites just as strongly as biotin in solution, the degree of biotinylation may be determined using the HABA method as well. Comparison of the response of a biotinylated protein, for example, with a standard curve of various biotin concentrations allows calculation of the molar ratio of biotin incorporation. [Pg.922]

Second, in designing new molecule-based electronic devices, one of the major goals is the precise control of the current flowing between the terminals. Electrochemical molecular junctions allow for control of the potentials of the electrodes with respect to the redox potential of incorporated redox-active molecules with well-defined, accessible, tunable energy states. These junctions represent unique systems able to predict precisely at which applied potential the current flow will take off. Even though the presence of a liquid electrolyte represents a detriment towards possible applications, they provide the concepts for designing molecular devices that mimic electronic functions and control electrical responses. [Pg.110]


See other pages where Molecules potential well is mentioned: [Pg.202]    [Pg.946]    [Pg.392]    [Pg.161]    [Pg.19]    [Pg.137]    [Pg.147]    [Pg.565]    [Pg.566]    [Pg.111]    [Pg.233]    [Pg.357]    [Pg.51]    [Pg.66]    [Pg.103]    [Pg.776]    [Pg.74]    [Pg.120]    [Pg.121]    [Pg.18]    [Pg.289]    [Pg.120]    [Pg.16]    [Pg.251]    [Pg.402]    [Pg.56]    [Pg.825]    [Pg.11]    [Pg.191]    [Pg.25]    [Pg.378]    [Pg.43]    [Pg.129]    [Pg.114]    [Pg.692]    [Pg.272]    [Pg.423]    [Pg.291]    [Pg.37]    [Pg.41]   


SEARCH



Molecule potential

© 2024 chempedia.info