Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Molecularity substitution reactions

However, Pd-catalyzed allylic alkylations have found more applications in intra- rather than in inter-molecular substitution reactions. Many of these alkylations are highly regio- and stereo-selective and occur with allylic rearrangement and are applied to construct various carbo- and hetero-cyclic sys-tems. " Some illustrative examples are shown in equations... [Pg.849]

Due to the pronounced tolerance of the Suzuki reaction towards additional functional groups in the monomers, precursor strategies as well as so called direct routes can be applied for polyelectrolyte synthesis. However, the latter possibility, where the ionic functionalities are already present in the monomers, was rejected. The reason is too difficult determination of molecular information by means of ionic polymers. Therefore the decision was to apply precursor strategies (Scheme 1). Here, the Pd-catalyzed polycondensation process of monomers A leads to a non-ionic PPP precursor B which can be readily characterized. Then, using sufficiently efficient and selective macro-molecular substitution reactions, precursor B can be transformed into well-defined PPP polyelectrolytes D, if appropriate via an activated intermediate C. [Pg.4]

Intra- and inter-molecular substitution reactions (55) and (56) involving the dialkylamino radical cations formed from protonated N-haloamines are well known and are based upon the initial work of Hofmann (1883) and of... [Pg.308]

In the case of phenazine, substitution in the hetero ring is clearly not possible without complete disruption of the aromatic character of the molecule. Like pyrazine and quinoxa-line, phenazine is very resistant towards the usual electrophilic reagents employed in aromatic substitution reactions and substituted phenazines are generally prepared by a modification of one of the synthetic routes employed in their construction from monocyclic precursors. However, a limited range of substitution reactions has been reported. Thus, phenazine has been chlorinated in acid solution with molecular chlorine to yield the 1-chloro, 1,4-dichloro, 1,4,6-trichloro and 1,4,6,9-tetrachloro derivatives, whose gross structures have been proven by independent synthesis (53G327). [Pg.164]

Nucleophilic substitution reactions that occur imder conditions of amine diazotization often have significantly different stereochemisby, as compared with that in halide or sulfonate solvolysis. Diazotization generates an alkyl diazonium ion, which rapidly decomposes to a carbocation, molecular nitrogen, and water ... [Pg.306]

To explain tlie stereodieniistiy of tlie allylic substitution reaction, a simple stereoelectronic model based on frontier molecular orbital considerations bas been proposed fl55. Fig. G.2). Organocopper reagents, unlike C-nudeopbiles, possess filled d-orbitals fd - configuration), wbidi can interact botli witli tlie 7t -fC=C) orbital at tlie y-carbon and to a minor extent witli tlie cr -fC X) orbital, as depicted... [Pg.210]

Substituent effect, additivity of, 570 electrophilic aromatic substitution and, 560-563 summary of. 569 Substitution reaction, 138 Substrate (enzyme), 1041 Succinic acid, structure of, 753 Sucralose, structure of. 1006 sweetness of, 1005 Sucrose, molecular model of. 999 specific rotation of, 296 structure of, 999 sweetness of, 1005 Sugar, complex, 974 d, 980 L, 980... [Pg.1316]

The nucleophilic aromatic substitution reaction for the synthesis of poly(arylene ether ketone)s is similar to that of polysulfone, involving aromatic dihalides and aromatic diphenolates. Since carbonyl is a weaker electron-withdrawing group titan sulfonyl, in most cases, difluorides need to be used to afford high-molecular-weight polymers. Typically potassium carbonate is used as a base to avoid the... [Pg.340]

Molecular structural changes in polyphosphazenes are achieved mainly by macromolecular substitution reactions rather than by variations in monomer types or monomer ratios (1-4). The method makes use of a reactive macromolecular intermediate, poly(dichlorophosphazene) structure (3), that allows the facile replacement of chloro side groups by reactions of this macromolecule with a wide range of chemical reagents. The overall pathway is summarized in Scheme I. [Pg.164]

It has been pointed out that the types of solvents which are used here, are not generally such as would enter into strong association with the substrate. The molecularity of the substitution reaction may then stand more chance of being an operational concept. Amongst the binary carbonyls, the only systems which have been extensively studied have been nickel tetracarbonyl and the hexacarbonyls of group VI. For the former, the observation of a first-order rate is at least consistent with a rate-determining dissociation of one carbonyl ligand followed by reaction of the intermediate with whichever nucleophile should be available. [Pg.28]

In a series of studies of the spectroscopy and photochemistry of nickel(O) -a-diimine complexes, the structural differences among the complexes NiL2 and Ni(CO)2L (L Q-diimine) have been examined by means of molecular orbital calculations and electronic absorption Raman resonance studies.2471, 472 Summing up earlier work, the noninnocence of a-diimine ligands with a flat — N=C—C=N— skeleton in low-valent Ni chemistry and the course of substitution reactions of Ni° complexes with 1,4-diaza-1,3-dienes or a,a -bipyridine have been reviewed.2473... [Pg.501]

Additional experimental, theoretical, and computational work is needed to acquire a complete understanding of the microscopic dynamics of gas-phase SN2 nucleophilic substitution reactions. Experimental measurements of the SN2 reaction rate versus excitation of specific vibrational modes of RY (equation 1) are needed, as are experimental studies of the dissociation and isomerization rates of the X--RY complex versus specific excitations of the complex s intermolecular and intramolecular modes. Experimental studies that probe the molecular dynamics of the [X-. r - Y]- central barrier region would also be extremely useful. [Pg.154]

Some interesting fused 1,2,3-triazole ring systems have been reported. A series of 5-piperidyl-substituted 7-hydroxy-3f/-l,2,3-triazolo[4,5-d]pyrimidines 143 has been synthesized from pipecolinate esters, benzylazides, and cyanoacetamide <06CHE246>. 4-Alkylidene-5,6-dihydro-4//-pyrrolo-[l,2-c][l,2,3]triazoles 144 were prepared from alkylidenecyclopropanes via diiodogenation/Cu(I)-catalyzed 1,3-dipolar cycloaddition/intra-molecular Heck reaction sequence <06SL1446>. 6,6-Dimethyl-2-phenyl-4,5,6,7-tetrahydro-27/-benzotriazol-4-one 145 were prepared from A-(5,5-dimethyl-3-oxocyclohexenyl)-S,S-diphenylsulfilimine and... [Pg.230]

The 5-position of the nonprotonated 1,2,4-thiadiazole system was calculated to be the most reactive in nucleophilic substitution reactions using a simple molecular orbital method <1984CHEC(6)463>. [Pg.489]

Molecular transport junctions differ from traditional chemical kinetics in that they are fundamentally electronic rather than nuclear - in chemical kinetics one talks about nucleophilic substitution reactions, isomerization processes, catalytic insertions, crystal forming, lattice changes - nearly always these are describing nuclear motion (although the electronic behavior underlies it). In general the areas of both electron transfer and electron transport focus directly on the charge motion arising from electrons, and are therefore intrinsically quantum mechanical. [Pg.12]

Supercritical water (SCW) presents a unique combination of aqueous and non-aqueous character, thus being able to replace an organic solvent in certain kinds of chemical synthesis. In order to allow for a better understanding of the particular properties of SCW and of its influence on the rate of chemical reactions, molecular dynamics computer simulations were used to determine the free energy of the SN2 substitution reaction of Cl- and CH3C1 in SCW as a function of the reaction coordinate [216]. The free energy surface of this reaction was compared with that for the gas-phase and ambient water (AW) [248], In the gas phase, an ion-dipole complex and a symmetric transition... [Pg.344]

The methods of anion detection based on fluorescence involve quenching, complex formation, redox reactions and substitution reactions (Fernandez-Gutierrez and Munoz de la Pena, 1985). This chapter will be restricted to anion molecular sensors based on collisional quenching (in general, they exhibit a poor selectivity) and on recognition by an anion receptor linked to a fluorophore (fluoroionophore). [Pg.315]


See other pages where Molecularity substitution reactions is mentioned: [Pg.165]    [Pg.13]    [Pg.165]    [Pg.13]    [Pg.41]    [Pg.2]    [Pg.508]    [Pg.442]    [Pg.330]    [Pg.441]    [Pg.461]    [Pg.636]    [Pg.2]    [Pg.575]    [Pg.840]    [Pg.1022]    [Pg.208]    [Pg.359]    [Pg.360]    [Pg.202]    [Pg.161]    [Pg.84]    [Pg.106]    [Pg.53]    [Pg.154]    [Pg.239]    [Pg.283]    [Pg.391]    [Pg.130]    [Pg.104]    [Pg.72]    [Pg.25]    [Pg.659]   
See also in sourсe #XX -- [ Pg.282 ]




SEARCH



Reaction molecular

© 2024 chempedia.info