Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Molecular weight distributions initiator systems

The high-molecular weight was assigned to the PMMA grafted to the copolymer chains and the low-molecular weight to the PMMA initiated by the MMA radical (II). However, only one molecular weight distribution peak was observed for the PMMA initiated by the latter system, i.e., in combination with BP, which implies that only aminomethyl radicals are capable of initiating the polymerization. [Pg.240]

This relation was verified experimentally7 49 and it was shown that the degree of polymerization in a system containing "living polymers is independent of concentrations of initiator or monomer and of temperature. Furthermore, if all the growing centers were formed in a time much shorter than the time of polymerization, a Poisson molecular weight distribution would be obtained. Indeed, by using this technique samples of polystyrene were obtained for which MjMn = 1.04. [Pg.177]

The processes described in this section should be contrasted with RAFT polymerization (Section 9.5.3), which can involve the use of similar thioearbonylthio compounds. A. A -dialkyl dithiocarbamates have very low transfer constants in polymerizations of S and (mctb)acrylatcs and arc not effective in RAFT polymerization of these monomers. However, /V,A -dialkyl dithiocarbamates have been successfully used in RAFT polymerization of VAc. Certain O-alkyl xanthates have been successfully used to control RAFT polymerizations of VAc, acrylates and S. The failure of the earlier experiments using these reagents and monomers to provide narrow molecular weight distributions by a RAFT mechanism can he attributed to the use of non-ideal reaction conditions and reagent choice. A two part photo-initiator system comprising a mixture of a benzyl dithiocarhamate and a dithiuram disulfide has also been described and provides better control (narrower molecular weight distributions).43... [Pg.464]

The living nature of ethylene oxide polymerization was anticipated by Flory 3) who conceived its potential for preparation of polymers of uniform size. Unfortunately, this reaction was performed in those days in the presence of alcohols needed for solubilization of the initiators, and their presence led to proton-transfer that deprives this process of its living character. These shortcomings of oxirane polymerization were eliminated later when new soluble initiating systems were discovered. For example, a catalytic system developed by Inoue 4), allowed him to produce truly living poly-oxiranes of narrow molecular weight distribution and to prepare di- and tri-block polymers composed of uniform polyoxirane blocks (e.g. of polyethylene oxide and polypropylene oxide). [Pg.89]

First, in composites with high fiber concentrations, there is little matrix in the system that is not near a fiber surface. Inasmuch as polymerization processes are influenced by the diffusion of free radicals from initiators and from reactive sites, and because free radicals can be deactivated when they are intercepted at solid boundaries, the high interfacial area of a prepolymerized composite represents a radically different environment from a conventional bulk polymerization reactor, where solid boundaries are few and very distant from the regions in which most of the polymerization takes place. The polymer molecular weight distribution and cross-link density produced under such diffusion-controlled conditions will differ appreciably from those in bulk polymerizations. [Pg.85]

A porphinatoaluminum alkoxide is reported to be a superior initiator of c-caprolactone polymerization (44,45). A living polymer with a narrow molecular weight distribution (M /Mjj = 1.08) is ob-tmned under conditions of high conversion, in part because steric hindrance at the catalyst site reduces intra- and intermolecular transesterification. Treatment with alcohols does not quench the catalytic activity although methanol serves as a coinitiator in the presence of the aluminum species. The immortal nature of the system has been demonstrated by preparation of an AB block copolymer with ethylene oxide. The order of reactivity is e-lactone > p-lactone. [Pg.78]

Cationic polymerization was considered for many years to be the less appropriate polymerization method for the synthesis of polymers with controlled molecular weights and narrow molecular weight distributions. This behavior was attributed to the inherent instability of the carbocations, which are susceptible to chain transfer, isomerization, and termination reactions [48— 52], The most frequent procedure is the elimination of the cation s /1-proton, which is acidic due to the vicinal positive charge. However, during the last twenty years novel initiation systems have been developed to promote the living cationic polymerization of a wide variety of monomers. [Pg.33]

The cationic ring opening polymerization of e-caprolactone, CL, and 8-valerolactone, VL, was investigated using n-Bu0H/HCl-Et20 as the initiation system [56]. It was observed that narrow molecular weight distribution samples were obtained. These results were combined with those previously... [Pg.35]

The polymerization of 2-(diethylamino)ethyl methacrylate, DEAEMA, was studied under different conditions. It was shown that the best system providing narrow molecular weight distribution polymers involved the use of p-toluenesulfonyl chloride/CuCl/HMTETA as the initiator/catalyst/ligand at 60 °C in methanol [72]. Taking advantage of these results, well-defined PDEAEMA-fr-PfBuMA block copolymers were obtained. The synthesis was successful when either fBuMA or DEAEMA was polymerized first. Poor results with bimodal distributions were obtained when CuBr was used as the catalyst. This behavior was attributed to the poor blocking efficiency of PDEAEMA-Br and the incomplete functionalization of the macroinitiator. [Pg.44]

Several nickel(II) complexes (e.g., (173)-(176)) have successfully been used to catalyze ATRP, especially when coupled with bromo-initiators, although activities are usually lower than with copper, ruthenium or iron systems.416-419 The alkylphosphine complex (175) is thermally more stable than (174) and has been used to polymerize a variety of acrylate monomers between 60 °C and 120 °C.418 Complex (176) is an unusual example of a well-defined zerovalent ATRP catalyst it displays similar activities to the Ni11 complexes, although molecular weight distributions (1.2-1.4) are higher.419 Pd(PPh3)4 has also been investigated and was reported to be less controlled than (176).420... [Pg.22]


See other pages where Molecular weight distributions initiator systems is mentioned: [Pg.439]    [Pg.439]    [Pg.15]    [Pg.240]    [Pg.246]    [Pg.413]    [Pg.364]    [Pg.508]    [Pg.516]    [Pg.217]    [Pg.183]    [Pg.39]    [Pg.48]    [Pg.83]    [Pg.85]    [Pg.109]    [Pg.29]    [Pg.90]    [Pg.93]    [Pg.105]    [Pg.295]    [Pg.76]    [Pg.515]    [Pg.73]    [Pg.560]    [Pg.190]    [Pg.73]    [Pg.213]    [Pg.20]    [Pg.34]    [Pg.35]    [Pg.36]    [Pg.39]    [Pg.45]    [Pg.45]    [Pg.67]    [Pg.82]    [Pg.114]    [Pg.51]    [Pg.56]    [Pg.68]    [Pg.74]   
See also in sourсe #XX -- [ Pg.107 , Pg.108 ]




SEARCH



Distribution system

Distribution weight

Initial weights

Molecular distribution

Molecular weight distribution

© 2024 chempedia.info