Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Molecular structure valence electrons

We describe here a new structure representation which extends the valence bond concept by new bond types that account for multi-haptic and electron-deficient bonds. This representation is called Representation Architecture for Molecular Structures by Electron Systems (RAMSES) it tries to incorporate ideas from Molecular Orbital (MO) Theory [8T]. [Pg.64]

In molecular orbital theory, electrons occupy orbitals called molecular orbitals that spread throughout the entire molecule. In other words, whereas in the Lewis and valence-bond models of molecular structure the electrons are localized on atoms or between pairs of atoms, in molecular orbital theory all valence electrons are delocalized over the whole molecule, not confined to individual bonds. [Pg.240]

Section 8.13 molecular structure valence shell electron-pair repulsion (VSEPR) model linear structure trigonal planar structure tetrahedral structure trigonal pyramid trigonal bipyramid octahedral structure square planar structure... [Pg.403]

The simplest molecular orbital method to use, and the one involving the most drastic approximations and assumptions, is the Huckel method. One str ength of the Huckel method is that it provides a semiquantitative theoretical treatment of ground-state energies, bond orders, electron densities, and free valences that appeals to the pictorial sense of molecular structure and reactive affinity that most chemists use in their everyday work. Although one rarely sees Huckel calculations in the resear ch literature anymore, they introduce the reader to many of the concepts and much of the nomenclature used in more rigorous molecular orbital calculations. [Pg.172]

Given the efficiency of VASP, electronic structure calculations with or without a static optimization of the atomic structure can now be performed on fast workstations for systems with a few hundred inequivalent atoms per cell (including transition-metais and first row elements). Molecular dynamics simulationsextending over several picoseconds are feasible (at tolerable computational effort) for systems with 1000 or more valence electrons. As an example we refer to the recent work on the metal/nonmetal transition in expanded fluid mercury[31]. [Pg.75]

Among the diatomic molecules of the second period elements are three familiar ones, N2,02, and F2. The molecules Li2, B2, and C2 are less common but have been observed and studied in the gas phase. In contrast, the molecules Be2 and Ne2 are either highly unstable or nonexistent. Let us see what molecular orbital theory predicts about the structure and stability of these molecules. We start by considering how the atomic orbitals containing the valence electrons (2s and 2p) are used to form molecular orbitals. [Pg.651]

Valence band spectra provide information about the electronic and chemical structure of the system, since many of the valence electrons participate directly in chemical bonding. One way to evaluate experimental UPS spectra is by using a fingerprint method, i.e., a comparison with known standards. Another important approach is to utilize comparison with the results of appropriate model quantum-chemical calculations 4. The combination with quantum-chcmica) calculations allow for an assignment of the different features in the electronic structure in terms of atomic or molecular orbitals or in terms of band structure. The experimental valence band spectra in some of the examples included in this chapter arc inteqneted with the help of quantum-chemical calculations. A brief outline and some basic considerations on theoretical approaches are outlined in the next section. [Pg.388]

The boranes are electron-deficient compounds (Section 3.8) we cannot write valid Lewis structures for them, because too few electrons are available. For instance, there are 8 atoms in diborane, so we need at least 7 bonds however, there are only 12 valence electrons, and so we can form at most 6 electron-pair bonds. In molecular orbital theory, these electron pairs are regarded as delocalized over the entire molecule, and their bonding power is shared by several atoms. In diborane, for instance, a single electron pair is delocalized over a B—H—B unit. It binds all three atoms together with bond order of 4 for each of the B—H bridging bonds. The molecule has two such bridging three-center bonds (9). [Pg.723]

There are two principal methods available for the quantum mechanical treatment of molecular structure, the valence bond method and the molecular orbital method. In this paper we shall make use of the latter, since it is simpler in form and is more easily adapted to quantitative calculations.3 We accordingly consider each electron... [Pg.195]

In this section, we develop a process for making schematic drawings of molecules called Lewis structures. A Lewis structure shows how the atoms in a molecule are bonded together. A Lewis structure also reveals the distribution of bonding and nonbonding valence electrons in a molecule. In a sense, a Lewis structure is a molecular blueprint that... [Pg.582]

The Lewis stmcture of a molecule shows how the valence electrons are distributed among the atoms. This gives a useful qualitative picture, but a more thorough understanding of chemistry requires more detailed descriptions of molecular bonding and molecular shapes. In particular, the three-dimensional structure of a molecule, which plays an essential role in determining chemical reactivity, is not shown directly by a Lewis structure. [Pg.603]

Triatomic species can be linear, like CO2, or bent, like O3. The principles of orbital overlap do not depend on the identity of the atoms involved, so all second-row triatomic species with 16 valence electrons have the same bonding scheme as CO2 and are linear. For example, dinitrogen oxide (N2 O) has 16 valence electrons, so it has an orbital configuration identical to that of CO2. Each molecule is linear with an inner atom whose steric number is 2. As in CO2, the bonding framework of N2 O can be represented with sp hybrid orbitals. Both molecules have two perpendicular sets of three tt molecular orbitals. The resonance structures of N2 O, described... [Pg.712]

Each energy level in the band is called a state. The important quantity to look at is the density of states (DOS), i.e. the number of states at a given energy. The DOS of transition metals are often depicted as smooth curves (Fig. 6.10), but in reality DOS curves show complicated structure, due to crystal structure and symmetry. The bands are filled with valence electrons of the atoms up to the Fermi level. In a molecule one would call this level the highest occupied molecular orbital or HOMO. [Pg.225]

Covalent bonds form between atoms with similar electronegativities. In these reactions, electrons do not migrate from one atom to another as they do in ionic bonds they are shared by the atoms in the molecule. A good way to visualize this was proposed by Gilbert Lewis, a chemist at the University of California, Berkeley. His representations of molecular bonds are called Lewis dot structures. These structures use dots to denote the valence electrons of an element or molecule. [Pg.84]

In one respect the valence shell electron-pair repulsion theory is no better (and no worse) than other theories of molecular structure. Predictions can only be made when the constitution is known, i.e. when it is already known which and how many atoms are joined... [Pg.70]

To derive the values of the coefficients at, Ph y, and 8i so that the bond energy is maximized and the correct molecular structure results, the mutual interactions between the electrons have to be considered. This requires a great deal of computational expenditure. However, in a qualitative manner the interactions can be estimated rather well that is exactly what the valence shell electron-pair repulsion theory accomplishes. [Pg.88]


See other pages where Molecular structure valence electrons is mentioned: [Pg.137]    [Pg.128]    [Pg.3]    [Pg.128]    [Pg.391]    [Pg.165]    [Pg.380]    [Pg.2222]    [Pg.40]    [Pg.2]    [Pg.2]    [Pg.9]    [Pg.46]    [Pg.757]    [Pg.761]    [Pg.78]    [Pg.103]    [Pg.165]    [Pg.374]    [Pg.381]    [Pg.458]    [Pg.59]    [Pg.4]    [Pg.19]    [Pg.299]    [Pg.19]    [Pg.84]    [Pg.158]    [Pg.716]    [Pg.373]    [Pg.120]    [Pg.384]    [Pg.70]    [Pg.73]   
See also in sourсe #XX -- [ Pg.141 ]




SEARCH



Molecular electronic structure

Molecular structure valence

Structure valency

Valence electron

Valence electronic structure

Valence electrons Valency

© 2024 chempedia.info