Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Molecular size, determining from

Molecular dynamics and density functional theory studies (see Section IX-2) of the Lennard-Jones 6-12 system determine the interfacial tension for the solid-liquid and solid-vapor interfaces [47-49]. The dimensionless interfacial tension ya /kT, where a is the Lennard-Jones molecular size, increases from about 0.83 for the solid-liquid interface to 2.38 for the solid-vapor at the triple point [49], reflecting the large energy associated with a solid-vapor interface. [Pg.267]

In Table XXV, the rates and amounts of absorption of various molecules are summarized (235). Polar molecules such as alcohol, ether, and amine are readily absorbed. In contrast, nonpolar molecules like hydrocarbons are sorbed only on the surface. The initial rates of absorption of molecules are plotted against the molecular size in Fig. 37. The initial rates of alcohol sorption greatly decrease as the molecular size increases from 20 A2 (methanol) to 35 A2 (1-butanol). The rates are higher for amines than for alcohols, regardless of the molecular size. This difference is due to the greater basicity of amines. Thus, it may be stated that the rate is primarily determined by the basicity (or polarity) and secondarily by the molecular size (235). [Pg.179]

A vast amount of research has been undertaken on adsorption phenomena and the nature of solid surfaces over the fifteen years since the first edition was published, but for the most part this work has resulted in the refinement of existing theoretical principles and experimental procedures rather than in the formulation of entirely new concepts. In spite of the acknowledged weakness of its theoretical foundations, the Brunauer-Emmett-Teller (BET) method still remains the most widely used procedure for the determination of surface area similarly, methods based on the Kelvin equation are still generally applied for the computation of mesopore size distribution from gas adsorption data. However, the more recent studies, especially those carried out on well defined surfaces, have led to a clearer understanding of the scope and limitations of these methods furthermore, the growing awareness of the importance of molecular sieve carbons and zeolites has generated considerable interest in the properties of microporous solids and the mechanism of micropore filling. [Pg.290]

To circumvent this need for calibration as well as to better understand the separation process itself, considerable effort has been directed toward developing the theoretical basis for the separation of molecules in terms of their size. Although partially successful, there are enough complications in the theoretical approach that calibration is still the safest procedure. If a calibration plot such as Fig. 9.14 is available and a detector output indicates a polymer emerging from the column at a particular value of Vj, then the molecular weight of that polymer is readily determined from the calibration, as indicated in Fig. 9.14. [Pg.644]

A multidimensional system using capillary SEC-GC-MS was used for the rapid identification of various polymer additives, including antioxidants, plasticizers, lubricants, flame retardants, waxes and UV stabilizers (12). This technique could be used for additives having broad functionalities and wide volatility ranges. The determination of the additives in polymers was carried out without performing any extensive manual sample pretreatment. In the first step, microcolumn SEC excludes the polymer matrix from the smaller-molecular-size additives. There is a minimal introduction of the polymer into the capillary GC column. Optimization of the pore sizes of the SEC packings was used to enhance the resolution between the polymer and its additives, and smaller pore sizes could be used to exclude more of the polymer... [Pg.307]

Finally, a fourth motivation for exploring gas solubilities in ILs is that they can act as probes of the molecular interactions with the ILs. Information can be discerned on the importance of specific chemical interactions such as hydrogen bonding, as well as dipole-dipole, dipole-induced dipole, and dispersion forces. Of course, this information can be determined from the solubility of a series of carefully chosen liquids, as well. FLowever, gases tend to be of the smallest size, and therefore the simplest molecules with which to probe molecular interactions. [Pg.82]

Molecular sizes and shapes play key roles in determining chemical and physical properties. The immense variety of chemical and physical properties displayed by substances in the natural world mirrors an equally immense variety of different types of molecules. However, variety need not come from a large number of different elements. The molecules that make up a cup of coffee are made up almost entirely of atoms of just five elements hydrogen, carbon, oxygen, nitrogen, and sulfur. Carbon, in particular, is capable of combining in many different ways, generating molecules with elaborate stractures. [Pg.119]


See other pages where Molecular size, determining from is mentioned: [Pg.315]    [Pg.292]    [Pg.218]    [Pg.120]    [Pg.315]    [Pg.515]    [Pg.243]    [Pg.234]    [Pg.18]    [Pg.442]    [Pg.432]    [Pg.347]    [Pg.35]    [Pg.232]    [Pg.52]    [Pg.36]    [Pg.300]    [Pg.221]    [Pg.1827]    [Pg.276]    [Pg.2]    [Pg.29]    [Pg.30]    [Pg.33]    [Pg.33]    [Pg.35]    [Pg.46]    [Pg.71]    [Pg.313]    [Pg.58]    [Pg.110]    [Pg.42]    [Pg.4]    [Pg.80]    [Pg.106]    [Pg.201]    [Pg.42]    [Pg.22]    [Pg.344]    [Pg.604]    [Pg.319]    [Pg.7]   


SEARCH



Molecular determinant

Molecular determination

Molecular size

Size determinations

© 2024 chempedia.info