Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Molecular-orbital calculations addition

A particularly useful property of the PX monomer is its enthalpy of formation. Conventional means of obtaining this value, such as through its heat of combustion, are, of course, excluded by its reactivity. An experimental attempt was made to obtain this measure of chemical reactivity with the help of ion cyclotron resonance a value of 209 17 kJ/mol (50 4 kcal/mol) was obtained (10). Unfortunately, the technique suffers from lack of resolution in addition to experimental imprecision. It is perhaps better to rely on molecular orbital calculations for the formation enthalpy. Using a semiempirical molecular orbital technique, which is tuned to give good values for heat of formation on experimentally accessible compounds, the heat of formation of /5-xylylene has been computed to be 234.8 kj/mol (56.1 kcal/mol) (11). [Pg.429]

Information on nucleophilic addition chemistry of quinones and various mechanistic rationali2ations have been discussed, and molecular orbital calculations have been proposed as more definitive approaches for explanation and prediction (63). [Pg.411]

Hydroxypyridine 1-oxide is insoluble in chloroform and other suitable solvents, and, although the solid-state infrared spectrum indicates that strong intermolecular hydrogen bonding occurs, no additional structural conclusions could be reached. Jaffe has attempted to deduce the structure of 4-hydroxypyridine 1-oxide using the Hammett equation and molecular orbital calculations. This tautomeric compound reacts with diazomethane to give both the 1- and 4-methoxy derivatives, " and the relation of its structure to other chemical reactions has been discussed by Hayashi. ... [Pg.359]

Molecular orbital calculations (ah initio or semiempirical methods) are also often used to provide a description of radical species and their reactions. High levels of theory are required to provide reliable data. However, rapid advances in computer power and computational methods are seeing these methods more widely used and with greater success (for leading references on the application of theory to describe radical addition reactions, see Section 1.2.7). [Pg.16]

Various ab initio and scmi-cmpirical molecular orbital calculations have been carried out on the reaction of radicals with simple alkenes with the aim of defining the nature of the transition state (Section 1.2.7).2I>,j , 6 These calculations all predict an unsymmetrical transition state for radical addition (i.e. Figure 1.1) though they differ in other aspects. Most calculations also indicate a degree of charge development in the transition state. [Pg.20]

Ab initio molecular orbital calculations are being used to study the reactions of anionic nucleophiles with carbonyl compounds in the gas phase. A rich variety of energy surfaces is found as shown here for reactions of hydroxide ion with methyl formate and formaldehyde, chloride ion with formyl and acetyl chloride, and fluoride ion with formyl fluoride. Extension of these investigations to determine the influence of solvation on the energy profiles is also underway the statistical mechanics approach is outlined and illustrated by results from Monte Carlo simulations for the addition of hydroxide ion to formaldehyde in water. [Pg.200]

This chapter covers the literatures of phosph(v)azenes. The general pattern of development in this area is similar to that observed in previous yearly reviews with additional interest being shown in polyphosphazenes and in a variety of molecular orbital calculations of both linear and cyclic phosphazenes. [Pg.364]

M.O. Calculations. The serai-empirical molecular orbital calculations were made using the UHF INDO model developed by Pople and co-workers (13), which incorporates the one-center exchange integral. Additionally, instead of assuming standard values for bond distances and angles, full geometry optimization at the INDO level was employed (14). Thus the results do not depend upon an arbitrary choice for the molecular geometry. [Pg.121]

Self-consistent field molecular orbital calculations by Fenske and coworkers have confirmed that nucleophilic additions to Fischer and related complexes [e.g., (CO)sCr=CXY, (T)5-C5H5)(CO)2Mn=CXY], are frontier orbital-controlled rather than charge-controlled reactions (7-9). Interaction of the HOMO of the nucleophile with the carbene complex LUMO (localized on Ca) destroys the metal-carbon w-interaction and converts the bond to a single one. [Pg.126]

There is considerable literature precedent for this reaction. In particular, Fotsch and Chamberlin (10) have reported that open chain y,8, 8,e and 6, -epoxy ketones and esters undergo cyclization in the presence of acids to form the corresponding dioxacarbenium ions. In addition, molecular orbital calculations were conducted to determine the heats of formation of the intermediates IX and X. Data from these calculations are given in Table 2. These calculations suggest that 1,6-attack (X) is... [Pg.91]

Radical ions - charged species with unpaired electrons - are easily generated by a number of methods that are discussed in more detail below. Their properties have been characterized by several spectroscopic techniques, and their structures and spin density contributions have been the subject of molecular orbital calculations at different levels of sophistication. The behaviour of radical ions in rearrangement and isomerization reactions as well as in bond-cleavage reactions has been extensively studied [for recent reviews see Refs. 11-13 and references cited therein]. Useful synthetic applications, such as the radical-cation-catalyzed cycloaddition [14-20] or the anfi-Markovnikov addition of nucleophiles to alkenyl radical cations [21-25], have been well documented. In... [Pg.78]


See other pages where Molecular-orbital calculations addition is mentioned: [Pg.131]    [Pg.134]    [Pg.162]    [Pg.86]    [Pg.128]    [Pg.174]    [Pg.179]    [Pg.320]    [Pg.277]    [Pg.211]    [Pg.620]    [Pg.181]    [Pg.201]    [Pg.7]    [Pg.79]    [Pg.207]    [Pg.238]    [Pg.39]    [Pg.106]    [Pg.54]    [Pg.348]    [Pg.36]    [Pg.174]    [Pg.56]    [Pg.1007]    [Pg.1013]    [Pg.1015]    [Pg.110]    [Pg.53]    [Pg.381]    [Pg.135]    [Pg.355]    [Pg.9]    [Pg.295]    [Pg.340]    [Pg.14]    [Pg.58]    [Pg.321]   
See also in sourсe #XX -- [ Pg.97 , Pg.228 ]




SEARCH



Additivity calculation

Calculations orbital

Molecular addition

Molecular calculated

Molecular calculations

Molecular orbital calculations

Molecular orbitals calculating

Orbitals calculation

© 2024 chempedia.info