Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Molecular dynamics coefficient

Predicting the solvent or density dependence of rate constants by equation (A3.6.29) or equation (A3.6.31) requires the same ingredients as the calculation of TST rate constants plus an estimate of and a suitable model for the friction coefficient y and its density dependence. While in the framework of molecular dynamics simulations it may be worthwhile to numerically calculate friction coefficients from the average of the relevant time correlation fiinctions, for practical purposes in the analysis of kinetic data it is much more convenient and instructive to use experimentally detemiined macroscopic solvent parameters. [Pg.849]

If a fluid is placed between two concentric cylinders, and the inner cylinder rotated, a complex fluid dynamical motion known as Taylor-Couette flow is established. Mass transport is then by exchange between eddy vortices which can, under some conditions, be imagmed as a substantially enlranced diflfiisivity (typically with effective diflfiision coefficients several orders of magnitude above molecular difhision coefficients) that can be altered by varying the rotation rate, and with all species having the same diffusivity. Studies of the BZ and CIMA/CDIMA systems in such a Couette reactor [45] have revealed bifiircation tlirough a complex sequence of front patterns, see figure A3.14.16. [Pg.1112]

The time dependence of the molecular wave function is carried by the wave function parameters, which assume the role of dynamical variables [19,20]. Therefore the choice of parameterization of the wave functions for electronic and nuclear degrees of freedom becomes important. Parameter sets that exhibit continuity and nonredundancy are sought and in this connection the theory of generalized coherent states has proven useful [21]. Typical parameters include molecular orbital coefficients, expansion coefficients of a multiconfigurational wave function, and average nuclear positions and momenta. We write... [Pg.224]

In this minimal END approximation, the electronic basis functions are centered on the average nuclear positions, which are dynamical variables. In the limit of classical nuclei, these are conventional basis functions used in moleculai electronic structure theoiy, and they follow the dynamically changing nuclear positions. As can be seen from the equations of motion discussed above the evolution of the nuclear positions and momenta is governed by Newton-like equations with Hellman-Feynman forces, while the electronic dynamical variables are complex molecular orbital coefficients that follow equations that look like those of the time-dependent Hartree-Fock (TDHF) approximation [24]. The coupling terms in the dynamical metric are the well-known nonadiabatic terms due to the fact that the basis moves with the dynamically changing nuclear positions. [Pg.228]

A molecular dynamics simulation provides data values at specific times. This enables thi value of some property at some instant to be correlated with the value of the same or anothe property at a later time t. The resulting values are known as time correlation coefficients. Thi correlation function is then written ... [Pg.391]

Calculations of relative partition coefficients have been reported using the free energy perturbation method with the molecular dynamics and Monte Carlo simulation methods. For example, Essex, Reynolds and Richards calculated the difference in partition coefficients of methanol and ethanol partitioned between water and carbon tetrachloride with molecular dynamics sampling [Essex et al. 1989]. The results agreed remarkably well with experiment... [Pg.588]

A key feature of the Car-Parrinello proposal was the use of molecular dynamics a simulated annealing to search for the values of the basis set coefficients that minimise I electronic energy. In this sense, their approach provides an alternative to the traditioi matrix diagonalisation methods. In the Car-Parrinello scheme, equations of motion ... [Pg.633]

Monte Carlo simulations require less computer time to execute each iteration than a molecular dynamics simulation on the same system. However, Monte Carlo simulations are more limited in that they cannot yield time-dependent information, such as diffusion coefficients or viscosity. As with molecular dynamics, constant NVT simulations are most common, but constant NPT simulations are possible using a coordinate scaling step. Calculations that are not constant N can be constructed by including probabilities for particle creation and annihilation. These calculations present technical difficulties due to having very low probabilities for creation and annihilation, thus requiring very large collections of molecules and long simulation times. [Pg.63]

Molecular dynamics calculations are more time-consuming than Monte Carlo calculations. This is because energy derivatives must be computed and used to solve the equations of motion. Molecular dynamics simulations are capable of yielding all the same properties as are obtained from Monte Carlo calculations. The advantage of molecular dynamics is that it is capable of modeling time-dependent properties, which can not be computed with Monte Carlo simulations. This is how diffusion coefficients must be computed. It is also possible to use shearing boundaries in order to obtain a viscosity. Molec-... [Pg.302]

When the friction coefficient is set to zero, HyperChem performs regular molecular dynamics, and one should use a time step that is appropriate for a molecular dynamics run. With larger values of the friction coefficient, larger time steps can be used. This is because the solution to the Langevin equation in effect separates the motions of the atoms into two time scales the short-time (fast) motions, like bond stretches, which are approximated, and longtime (slow) motions, such as torsional motions, which are accurately evaluated. As one increases the friction coefficient, the short-time motions become more approximate, and thus it is less important to have a small timestep. [Pg.93]

FIQ. 3 Diffusion coefficient of benzene molecules in benzene-polystyrene mixtures normalized by the diffusion coefficient of neat benzene molecular dynamics results, NMR measurements and prediction by the Mackie-Meares model [26]. [Pg.491]

Self-diffusion coefficients are dynamic properties that can be easily obtained by molecular dynamics simulation. The properties are obtained from mean-square displacement by the Einstein equation ... [Pg.165]

There are several attractive features of such a mesoscopic description. Because the dynamics is simple, it is both easy and efficient to simulate. The equations of motion are easily written and the techniques of nonequilibriun statistical mechanics can be used to derive macroscopic laws and correlation function expressions for the transport properties. Accurate analytical expressions for the transport coefficient can be derived. The mesoscopic description can be combined with full molecular dynamics in order to describe the properties of solute species, such as polymers or colloids, in solution. Because all of the conservation laws are satisfied, hydrodynamic interactions, which play an important role in the dynamical properties of such systems, are automatically taken into account. [Pg.91]

In the canonical ensemble (P2) = 3kBTM and p M. In the microcanonical ensemble (P2) = 3kgT i = 3kBTMNm/(M + Nm) [49]. If the limit M —> oo is first taken in the calculation of the force autocorrelation function, then p = Nm and the projected and unprojected force correlations are the same in the thermodynamic limit. Since MD simulations are carried out at finite N, the study of the N (and M) dependence of (u(t) and the estimate of the friction coefficient from either the decay of the momentum or force correlation functions is of interest. Molecular dynamics simulations of the momentum and force autocorrelation functions as a function of N have been carried out [49, 50]. [Pg.116]

Multiparticle collision dynamics describes the interactions in a many-body system in terms of effective collisions that occur at discrete time intervals. Although the dynamics is a simplified representation of real dynamics, it conserves mass, momentum, and energy and preserves phase space volumes. Consequently, it retains many of the basic characteristics of classical Newtonian dynamics. The statistical mechanical basis of multiparticle collision dynamics is well established. Starting with the specification of the dynamics and the collision model, one may verify its dynamical properties, derive macroscopic laws, and, perhaps most importantly, obtain expressions for the transport coefficients. These features distinguish MPC dynamics from a number of other mesoscopic schemes. In order to describe solute motion in solution, MPC dynamics may be combined with molecular dynamics to construct hybrid schemes that can be used to explore a variety of phenomena. The fact that hydrodynamic interactions are properly accounted for in hybrid MPC-MD dynamics makes it a useful tool for the investigation of polymer and colloid dynamics. Since it is a particle-based scheme it incorporates fluctuations so that the reactive and nonreactive dynamics in small systems where such effects are important can be studied. [Pg.139]

F. Ould-Kaddour and D. Levesque, Determination of the friction coefficient of a Brownian particle by molecular-dynamics simulation, J. Chem. Phys. 118, 7888 (2003). [Pg.143]

Monte Carlo heat flow simulation, nonequilibrium molecular dynamics, 73-74, 77-81 multiparticle collision dynamics hydrodynamic equations, 105-107 macroscopic laws and transport coefficients, 102-104 single-particle friction and diffusion, 114-118... [Pg.281]


See other pages where Molecular dynamics coefficient is mentioned: [Pg.890]    [Pg.2536]    [Pg.367]    [Pg.421]    [Pg.359]    [Pg.93]    [Pg.390]    [Pg.392]    [Pg.393]    [Pg.406]    [Pg.409]    [Pg.468]    [Pg.634]    [Pg.634]    [Pg.644]    [Pg.654]    [Pg.64]    [Pg.470]    [Pg.254]    [Pg.375]    [Pg.464]    [Pg.102]    [Pg.107]    [Pg.643]    [Pg.644]    [Pg.645]    [Pg.646]    [Pg.197]    [Pg.667]    [Pg.131]    [Pg.821]   
See also in sourсe #XX -- [ Pg.230 ]




SEARCH



Dynamic coefficient

Molecular Dynamics diffusion coefficient

Molecular dynamics simulation, diffusion coefficient estimation

© 2024 chempedia.info