Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Molecular dynamics atomistic models

Figure 2 illustrates major modeling methods, i.e., ab initio molecular dynamic (AIMD), molecular dynamic (MD), kinetic Monte Carlo (KMC), and continuum methods in terms of their spatial and temporal scales. Models for microscopic and macroscopic components of a PEFC are placed in the figure in terms of their characteristic dimensions for comparison. While continuum models are successful in rationalizing the macroscopic behaviors based on a few assumptions and the average properties of the materials, molecular or atomistic modeling can evaluate the nanostructures or molecular structures and microscopic properties. In computational... [Pg.309]

In 2001, Hanke, Price and Lynden-BelP were the first to conduct an atomistic simulation of compovmds that can be called ionic liquids under our definition. They used molecular dynamics to model the crystalline state of 1,3-dimethylimidazolium chloride ([Cimim][Cl]), 1,3-dimethylimidazolium hexafluorophosphate ([CimimllPFg]), l-ethyl-3-methylimidazolium chloride ([C2mim][Cl]), and l-ethyl-3-methylimidazolium hexafluorophosphate ([C2 mimJlPFg]). They also modeled the liquid state of [Cimim][Cl] and [Cimim] [PFg], both of which are relatively high melting substances. Because of this (and the need to speed dynamics and thus limit computation times), the liquid simulations were carried out at temperatures between 400 and 500 K. The form of the potential function they used was... [Pg.431]

Elhott, J. A., EUiott, A. M. S., and Cooley, G. E. 1999. Atomistic simulation and molecular dynamics of model systems for perfluorinated ionomer membranes. [Pg.481]

Empirical energy functions can fulfill the demands required by computational studies of biochemical and biophysical systems. The mathematical equations in empirical energy functions include relatively simple terms to describe the physical interactions that dictate the structure and dynamic properties of biological molecules. In addition, empirical force fields use atomistic models, in which atoms are the smallest particles in the system rather than the electrons and nuclei used in quantum mechanics. These two simplifications allow for the computational speed required to perform the required number of energy calculations on biomolecules in their environments to be attained, and, more important, via the use of properly optimized parameters in the mathematical models the required chemical accuracy can be achieved. The use of empirical energy functions was initially applied to small organic molecules, where it was referred to as molecular mechanics [4], and more recently to biological systems [2,3]. [Pg.7]

From this short discussion, it is clear that atomistically detailed molecular dynamics or Monte Carlo simulations can provide a wealth of information on systems on a local molecular atomistic level. They can, in particular, address problems where small changes in chemical composition have a drastic effect. Since chemical detail is avoided in mesoscopic models, these can often capture such effects only indirectly. [Pg.493]

This article reviews progress in the field of atomistic simulation of liquid crystal systems. The first part of the article provides an introduction to molecular force fields and the main simulation methods commonly used for liquid crystal systems molecular mechanics, Monte Carlo and molecular dynamics. The usefulness of these three techniques is highlighted and some of the problems associated with the use of these methods for modelling liquid crystals are discussed. The main section of the article reviews some of the recent science that has arisen out of the use of these modelling techniques. The importance of the nematic mean field and its influence on molecular structure is discussed. The preferred ordering of liquid crystal molecules at surfaces is examined, along with the results from simulation studies of bilayers and bulk liquid crystal phases. The article also discusses some of the limitations of current work and points to likely developments over the next few years. [Pg.41]

The rapid rise in computer speed over recent years has led to atom-based simulations of liquid crystals becoming an important new area of research. Molecular mechanics and Monte Carlo studies of isolated liquid crystal molecules are now routine. However, care must be taken to model properly the influence of a nematic mean field if information about molecular structure in a mesophase is required. The current state-of-the-art consists of studies of (in the order of) 100 molecules in the bulk, in contact with a surface, or in a bilayer in contact with a solvent. Current simulation times can extend to around 10 ns and are sufficient to observe the growth of mesophases from an isotropic liquid. The results from a number of studies look very promising, and a wealth of structural and dynamic data now exists for bulk phases, monolayers and bilayers. Continued development of force fields for liquid crystals will be particularly important in the next few years, and particular emphasis must be placed on the development of all-atom force fields that are able to reproduce liquid phase densities for small molecules. Without these it will be difficult to obtain accurate phase transition temperatures. It will also be necessary to extend atomistic models to several thousand molecules to remove major system size effects which are present in all current work. This will be greatly facilitated by modern parallel simulation methods that allow molecular dynamics simulations to be carried out in parallel on multi-processor systems [115]. [Pg.61]

Molecular simulation methods can be a complement to surface complexation modeling on metal-bacteria adsorption reactions, which provides a more detailed and atomistic information of how metal cations interact with specific functional groups within bacterial cell wall. Johnson et al., (2006) applied molecular dynamics (MD) simulations to analyze equilibrium structures, coordination bond distances of metal-ligand complexes. [Pg.86]

CNTs have extremely high stiffness and strength, and are regarded as perfect reinforcing fibers for developing a new class of nanocomposites. The use of atomistic or molecular dynamics (MD) simulations is inevitable for the analysis of such nanomaterials in order to study the local load transfers, interface properties, or failure modes at the nanoscale. Meanwhile, continuum models based on micromechan-ics have been shown in several recent studies to be useful in the global analysis for characterizing such nanomaterials at the micro- or macro-scale. [Pg.205]

The earliest fully atomistic molecular dynamic (MD) studies of a simplified Nation model using polyelectrolyte analogs showed the formation of a percolating structure of water-filled channels, which is consistent with the basic ideas of the cluster-network model of Hsu and Gierke. The first MD... [Pg.359]

An alternative mesoscale approach for high-level molecular modeling of hydrated ionomer membranes is coarse-grained molecular dynamics (CGMD) simulations. One should notice an important difference between CGMD and DPD techniques. CGMD is essentially a multiscale technique (parameters are directly extracted from classical atomistic MD) and it... [Pg.363]

This bimodal dynamics of hydration water is intriguing. A model based on dynamic equilibrium between quasi-bound and free water molecules on the surface of biomolecules (or self-assembly) predicts that the orientational relaxation at a macromolecular surface should indeed be biexponential, with a fast time component (few ps) nearly equal to that of the free water while the long time component is equal to the inverse of the rate of bound to free transition [4], In order to gain an in depth understanding of hydration dynamics, we have carried out detailed atomistic molecular dynamics (MD) simulation studies of water dynamics at the surface of an anionic micelle of cesium perfluorooctanoate (CsPFO), a cationic micelle of cetyl trimethy-lainmonium bromide (CTAB), and also at the surface of a small protein (enterotoxin) using classical, non-polarizable force fields. In particular we have studied the hydrogen bond lifetime dynamics, rotational and dielectric relaxation, translational diffusion and vibrational dynamics of the surface water molecules. In this article we discuss the water dynamics at the surface of CsPFO and of enterotoxin. [Pg.214]

In another paper in this issue [1], the molecular motions involved in secondary transitions of many amorphous polymers of quite different chemical structures have been analysed in detail by using a large set of experimental techniques (dynamic mechanical measurements, dielectric relaxation, H, 2H and 13C solid state NMR), as well as atomistic modelling. [Pg.219]

Because of the complexity of hydrated PEMs, a full atomistic modeling of proton transport is impractical. The generic problem is a disparity of time and space scales. While elementary molecular dynamics events occur on a femtosecond time scale, the time interval between consecutive transfer events is usually 3 orders of magnitude greater. The smallest pore may be a few tenth of nanometer while the largest may be a few tens of nanometers. The molecular dynamics events that protons transfer between the water filled pores may have a timescale of 100-1000 ns. This combination of time and spatial scales are far out of the domain for AIMD but in the domain of MD and KMC as shown in Fig. 2. Because of this difficulty, in the models the complexity of the systems is restricted. In fact in many models the dynamics of excess protons in liquid water is considered as an approximation for proton conduction in a hydrated Nation membrane. The conformations and energetics of proton dissociation in acid/water clusters were also evaluated as approximations for those in a Nation membrane.16,19 20 22 24 25... [Pg.364]

Figure 17. An atomistic model for molecular dynamic simulation of physical diffusion of ions and mediator in Nafion clusters.138 Reprinted from Journal of Electrochemical Society, X. Zhou, Z. Chen, F. Delgado, D. Brenner, R. Srivastava, J. Electrochem. Soc. 154, B82 (2007)- reproduced by permission of the Electrochemical Society. Figure 17. An atomistic model for molecular dynamic simulation of physical diffusion of ions and mediator in Nafion clusters.138 Reprinted from Journal of Electrochemical Society, X. Zhou, Z. Chen, F. Delgado, D. Brenner, R. Srivastava, J. Electrochem. Soc. 154, B82 (2007)- reproduced by permission of the Electrochemical Society.
The final two chapters discuss modeling of PEFCs. Mukherjee and Wang provide an in-depth review of meso-scale modeling of two-phase transport, while Zhou et al. summarize both the simulation of electrochemical reactions on electrocatalysts and the transport of protons through the polymer electrolyte using atomistic simulation tools such as molecular dynamics and Monte Carlo techniques. [Pg.404]

The second contribution spans an even larger range of length and times scales. Two benchmark examples illustrate the design approach polymer electrolyte fuel cells and hard disk drive (HDD) systems. In the current HDDs, the read/write head flies about 6.5 nm above the surface via the air bearing design. Multi-scale modeling tools include quantum mechanical (i.e., density functional theory (DFT)), atomistic (i.e., Monte Carlo (MC) and molecular dynamics (MD)), mesoscopic (i.e., dissipative particle dynamics (DPD) and lattice Boltzmann method (LBM)), and macroscopic (i.e., LBM, computational fluid mechanics, and system optimization) levels. [Pg.239]

Model systems can be, on the one hand, subjected to a static structure optimization. There, the fact is considered that the potential energy of a relaxed atomistic system (cf. Equation 1.1) should show a minimum value. Static optimization then means that by suited numeric procedures the geometry of the simulated system is changed as long as the potential energy reaches the next minimum value [16]. In the context of amorphous packing models, the main application for this kind of procedure is the reduction of unrealistic local tensions in a model as a prerequisite for later molecular dynamic (MD) simulations. [Pg.6]

The development of multiscale simulation techniques that involve the atomistic modeling of various structures and processes still remains at its early stage. There are many problems to be solved associated with more accurate and detailed description of these structures and processes. These problems include the development of efficient and fast methods for quantum calculations at the atomistic level, the development of transferable interatomic potentials (especially, reactive potentials) for molecular dynamic simulations, and the development of strategies for the application of multiscale simulation methods to other important processes and materials (optical, magnetic, sensing, etc.). [Pg.516]


See other pages where Molecular dynamics atomistic models is mentioned: [Pg.496]    [Pg.39]    [Pg.372]    [Pg.2538]    [Pg.637]    [Pg.627]    [Pg.130]    [Pg.85]    [Pg.687]    [Pg.160]    [Pg.184]    [Pg.427]    [Pg.362]    [Pg.368]    [Pg.24]    [Pg.56]    [Pg.116]    [Pg.174]    [Pg.6]    [Pg.310]    [Pg.373]    [Pg.75]    [Pg.108]    [Pg.233]    [Pg.55]    [Pg.468]    [Pg.519]    [Pg.150]    [Pg.162]    [Pg.281]   
See also in sourсe #XX -- [ Pg.3 , Pg.143 ]

See also in sourсe #XX -- [ Pg.143 ]

See also in sourсe #XX -- [ Pg.143 ]




SEARCH



Atomistic modelling

Atomistic models

Atomistic molecular dynamics

Atomistic molecular modeling

Atomists

Model dynamical molecular

Molecular atomistic

Molecular dynamic models

Molecular dynamics modeling

Molecular dynamics modelling

Molecular dynamics using atomistic models

© 2024 chempedia.info