Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Molecular dispersion coefficient

The parametrization procedure that we have opted for in the most recent works is as follows (1) Compute the intermolecular dynamic correlation energy for the ground state with a second-order Mpller-Plesset (MP2) expression that only contains the intermolecular part and which uses monomer orbitals. Fit the dispersion parameters to this potential. To aid in the distribution of the parameters, a version of the exchange-hole method by Becke and Johnson is sometimes used [154,155], Becke and Johnson show that the molecular dispersion coefficient can be obtained fairly well by a relation that involves the static polarizability and the exchange-hole dipole moment ... [Pg.233]

Neglecting flow nonuniformities, the contributions of molecular diffusion and turbulent mixing arising from stream sphtting and recombination around the sorbent particles can be considered additive [Langer et al., Int. ]. Heat and Mass Transfer, 21, 751 (1978)] thus, the axial dispersion coefficient is given by ... [Pg.1513]

Dispersion The movement of aggregates of molecules under the influence of a gradient of concentration, temperature, and so on. The effect is represented hy Tick s law with a dispersion coefficient substituted for molecular diffusivity. Thus, rate of transfer = —Dj3C/3p). [Pg.2082]

Dispersion Model An impulse input to a stream flowing through a vessel may spread axially because of a combination of molecular diffusion and eddy currents that together are called dispersion. Mathematically, the process can be represented by Fick s equation with a dispersion coefficient replacing the diffusion coefficient. The dispersion coefficient is associated with a linear dimension L and a linear velocity in the Peclet number, Pe = uL/D. In plug flow, = 0 and Pe oq and in a CSTR, oa and Pe = 0. [Pg.2089]

The dispersion coefficient is orders of magnitude larger than the molecular diffusion coefficient. Some rough correlations of the Peclet number are proposed by Wen (in Petho and Noble, eds.. Residence Time Distribution Theory in Chemical Tngineeiing, Verlag Chemie, 1982), including some for flmdized beds. Those for axial dispersion are ... [Pg.2089]

The distribution of tracer molecule residence times in the reactor is the result of molecular diffusion and turbulent mixing if tlie Reynolds number exceeds a critical value. Additionally, a non-uniform velocity profile causes different portions of the tracer to move at different rates, and this results in a spreading of the measured response at the reactor outlet. The dispersion coefficient D (m /sec) represents this result in the tracer cloud. Therefore, a large D indicates a rapid spreading of the tracer curve, a small D indicates slow spreading, and D = 0 means no spreading (hence, plug flow). [Pg.725]

The parameter D is known as the axial dispersion coefficient, and the dimensionless number, Pe = uL/D, is the axial Peclet number. It is different than the Peclet number used in Section 9.1. Also, recall that the tube diameter is denoted by df. At high Reynolds numbers, D depends solely on fluctuating velocities in the axial direction. These fluctuating axial velocities cause mixing by a random process that is conceptually similar to molecular diffusion, except that the fluid elements being mixed are much larger than molecules. The same value for D is used for each component in a multicomponent system. [Pg.329]

Apparent dispersion coefficient, Z) (assnmed to be equal to molecular dilTusivity) 0.00033 cm ... [Pg.37]

Axial and radial dispersion or non-ideal flow in tubular reactors is usually characterised by analogy to molecular diffusion, in which the molecular diffusivity is replaced by eddy dispersion coefficients, characterising both radial and longitudinal dispersion effects. In this text, however, the discussion will be limited to that of tubular reactors with axial dispersion only. Otherwise the model equations become too complicated and beyond the capability of a simple digital simulation language. [Pg.243]

Independent self-diffusion measurements [38] of molecularly dispersed water in decane over the 8-50°C interval were used, in conjunction with the self-diffusion data of Fig. 6, to calculate the apparent mole fraction of water in the pseudocontinuous phase from the two-state model of Eq. (1). In these calculations, the micellar diffusion coefficient, D ic, was approximated by the measured self-dilfusion coefficient for AOT below 28°C, and by the linear extrapolation of these AOT data above 28°C. This apparent mole fraction x was then used to graphically derive the anomalous mole fraction x of water in the pseudocontinuous phase. These mole fractions were then used to calculate values for... [Pg.258]

X 10 cm by measuring molecularly dispersed water in toluene and by correcting for local viscosity differences between toluene and these microemulsions [36]. Values for Dfnic were taken as the observed self-diffusion coefficient for AOT. The apparent mole fraction of water in the continuous toluene pseudophases was then calculated from Eq. (1) and the observed water proton self-diffusion data of Fig. 9. These apparent mole fractions are illustrated in Fig. 10 (top) as a function of... [Pg.261]

The axial dispersion coefficient [cf. Eq. (16-51)] lumps together all mechanisms leading to axial mixing in packed beds. Thus, the axial dispersion coefficient must account not only for molecular diffusion and convective mixing but also for nonuniformities in the fluid velocity across the packed bed. As such, the axial dispersion coefficient is best determined experimentally for each specific contactor. [Pg.21]

Dispersion in packed tubes with wall effects was part of the CFD study by Magnico (2003), for N — 5.96 and N — 7.8, so the author was able to focus on mass transfer mechanisms near the tube wall. After establishing a steady-state flow, a Lagrangian approach was used in which particles were followed along the trajectories, with molecular diffusion suppressed, to single out the connection between flow and radial mass transport. The results showed the ratio of longitudinal to transverse dispersion coefficients to be smaller than in the literature, which may have been connected to the wall effects. The flow structure near the wall was probed by the tracer technique, and it was observed that there was a boundary layer near the wall of width about Jp/4 (at Ret — 7) in which there was no radial velocity component, so that mass transfer across the layer... [Pg.354]

In the intermediate range of Reynolds numbers, the effects of molecular diffusivity and of macroscopic mixing are approximately additive, and the dispersion coefficient is given by an equation of the form ... [Pg.209]

Here, is the distance between atoms i andj, C(/ is a dispersion coefficient for atoms i andj, which can be calculated directly from tabulated properties of the individual atoms, and /dampF y) is a damping function to avoid unphysical behavior of the dispersion term for small distances. The only empirical parameter in this expression is S, a scaling factor that is applied uniformly to all pairs of atoms. In applications of DFT-D, this scaling factor has been estimated separately for each functional of interest by optimizing its value with respect to collections of molecular complexes in which dispersion interactions are important. There are no fundamental barriers to applying the ideas of DFT-D within plane-wave DFT calculations. In the work by Neumann and Perrin mentioned above, they showed that adding dispersion corrections to forces... [Pg.226]

Taylor (T2) and Westhaver (W5, W6, W7) have discussed the relationship between dispersion models. For laminar flow in round empty tubes, they showed that dispersion due to molecular diffusion and radial velocity variations may be represented by flow with a flat velocity profile equal to the actual mean velocity, u, and with an effective axial dispersion coefficient Djf = However, in the analysis, Taylor... [Pg.135]

For long times, we see that the dispersion is proportional to the first power of time. The dispersion coefficient can be defined in a way similar to the Einstein equation for molecular diffusion. ... [Pg.148]

Db R) Radial dispersion coefficient, general dispersion model in cylindrical coordinates Molecular diffusivity Exit age distribution function, defined in Section I... [Pg.190]

As already said, Taylor s effective model contains a contribution in the effective diffusion coefficient, which is proportional to the square of the transversal Peclet number. Frequently this term is more important than the original molecular diffusion. After his work, it is called Taylor s dispersion coefficient and it is generally accepted and used in chemical engineering numerical simulations. For the practical applications we refer to the classical paper (Rubin, 1983) by Rubin. The mathematical study of the models from Rubin (1983) was undertaken in Friedman and Knabner (1992). [Pg.3]

Axial and radial dispersion coefficients are equal at low Reynolds numbers because the dispersion is due to the molecular diffusion and the axial and radial structures of the bed are similar (Gunn, 1968). However, at high Reynolds numbers, the convective dispersion dominates and the values are different because the axial dispersion is primarily caused by differences in the fluid velocity in the flow channels, whereas the radial dispersion is primarily caused by deviations in the flow path caused by the particles. [Pg.149]

Ae water"omV bon herenTnf tration, temperature, etc.) to the spatial gradient of the property. It can be a sentedby C Seetext further molecular diffusion coefficient, a coefficient of turbulent diffusion, or a dispersion explanations. coefficient. [Pg.837]

Diw is the molecular diffusion coefficient of the chemical in water, x is tortuosity, and aL is the (longitudinal) dispersivity (dimension L). The first term describes molecular diffusion in a porous medium (Eq. 18-57), the second the effect of dispersion (Eq. 22-52). Typical values of the dispersivity aL for field systems with flow distances of up to about 100 m lie between 1 and 100 m. Since aL depends strongly on the scale... [Pg.1155]


See other pages where Molecular dispersion coefficient is mentioned: [Pg.19]    [Pg.99]    [Pg.19]    [Pg.99]    [Pg.68]    [Pg.23]    [Pg.214]    [Pg.106]    [Pg.318]    [Pg.396]    [Pg.217]    [Pg.53]    [Pg.804]    [Pg.397]    [Pg.290]    [Pg.206]    [Pg.210]    [Pg.307]    [Pg.222]    [Pg.144]    [Pg.77]    [Pg.293]    [Pg.296]   
See also in sourсe #XX -- [ Pg.233 ]




SEARCH



Dispersion coefficients

Molecular interactions dispersion coefficients

Molecularly dispersed

© 2024 chempedia.info