Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Molecular connectivity estimation systems

On the basis of data obtained the possibility of substrates distribution and their D-values prediction using the regressions which consider the hydrophobicity and stmcture of amines was investigated. The hydrophobicity of amines was estimated by the distribution coefficient value in the water-octanole system (Ig P). The molecular structure of aromatic amines was characterized by the first-order molecular connectivity indexes ( x)- H was shown the independent and cooperative influence of the Ig P and parameters of amines on their distribution. Evidently, this fact demonstrates the host-guest phenomenon which is inherent to the organized media. The obtained in the research data were used for optimization of the conditions of micellar-extraction preconcentrating of metal ions with amines into the NS-rich phase with the following determination by atomic-absorption method. [Pg.276]

A variety of parameters are included into the QSAR equation. Log P is a commonly used parameter and is obtained from Medchem or estimated using the CLOGP3 computer program. Molecular weight is calculated. In interspecies models the LD50 or LC50 value is incorporated as a typical parameter. Molecular connectivity indexes, electronic charge distributions, and kappa environmental descriptors have been proven as powerful predictors of toxicity. The efficacy of these values lies in the fact that each of these parameters describes a molecule in a fashion similar to that actually seen by the molecular receptors that initiate a toxic response. Substructural keys are identified with the help of the MOLSTAC substructural key system. MOLSTAC consists of five classes of descriptors ... [Pg.139]

The pore size of Cs2.2 and Cs2.1 cannot be determined by the N2 adsorption, so that their pore sizes were estimated from the adsorption of molecules having different molecular size. Table 3 compares the adsorption capacities of Csx for various molecules measured by a microbalance connected directly to an ultrahigh vacuum system [18]. As for the adsorption of benzene (kinetic diameter = 5.9 A [25]) and neopentane (kinetic diameter = 6.2 A [25]), the ratios of the adsorption capacity between Cs2.2 and Cs2.5 were similar to the ratio for N2 adsorption. Of interest are the results of 1,3,5-trimethylbenzene (kinetic diameter = 7.5 A [25]) and triisopropylbenzene (kinetic diameter = 8.5 A [25]). Both adsorbed significantly on Cs2.5, but httle on Cs2.2, indicating that the pore size of Cs2.2 is in the range of 6.2 -7.5 A and that of Cs2.5 is larger than 8.5 A in diameter. In the case of Cs2.1, both benzene and neopentane adsorbed only a little. Hence the pore size of Cs2.1 is less than 5.9 A. These results demonstrate that the pore structure can be controlled by the substitution for H+ by Cs+. [Pg.587]

Fukui functions and other response properties can also be derived from the one-electron Kohn-Sham orbitals of the unperturbed system [14]. Following Equation 12.9, Fukui functions can be connected and estimated within the molecular orbital picture as well. Under frozen orbital approximation (FOA of Fukui) and neglecting the second-order variations in the electron density, the Fukui function can be approximated as follows [15] ... [Pg.167]

Phase Transitions in Lipid Assemblies. The rich polymorphism of amphiphilic systems, of which the multilamellar and the Hn phases are only two structures, was made evident from the seminal work of Luzzati and co-workers. Since that early work, an immense variety of water-induced phase transitions have been observed and rationalized in terms of an apparently systematic connection between water content and polar group molecular area. Therefore, the recent observation of a double transition—Hn to lamellar back to Hn—from continual hydration of dioleoylphosphatidyl-ethanolamine (40) was a surprise. Furthermore, an estimate of the cost of uncurling the monolayer in the formation of bilayers based on the previously described bending modulus far exceeds the osmotic work that actually produced the transition. Although this transition sequence can successfully be accounted for by simple thermodynamical principles, it, in fact, contains many geometry-dependent free energy contributions that we simply do not yet understand (41). [Pg.191]


See other pages where Molecular connectivity estimation systems is mentioned: [Pg.254]    [Pg.287]    [Pg.21]    [Pg.254]    [Pg.252]    [Pg.513]    [Pg.178]    [Pg.388]    [Pg.172]    [Pg.108]    [Pg.313]    [Pg.262]    [Pg.317]    [Pg.11]    [Pg.324]    [Pg.325]    [Pg.11]    [Pg.194]    [Pg.246]    [Pg.333]    [Pg.446]    [Pg.2]    [Pg.440]    [Pg.417]    [Pg.2926]    [Pg.616]    [Pg.1223]    [Pg.150]    [Pg.659]    [Pg.672]    [Pg.301]    [Pg.214]    [Pg.1]    [Pg.16]    [Pg.246]    [Pg.112]    [Pg.112]    [Pg.168]    [Pg.19]    [Pg.12]    [Pg.20]    [Pg.133]    [Pg.833]    [Pg.2]    [Pg.407]   
See also in sourсe #XX -- [ Pg.388 ]

See also in sourсe #XX -- [ Pg.388 ]




SEARCH



Connection system

Molecular connectivity

© 2024 chempedia.info